Cargando…

Bioengineered materials with selective antimicrobial toxicity in biomedicine

Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrob...

Descripción completa

Detalles Bibliográficos
Autores principales: Makvandi, Pooyan, Song, Hao, Yiu, Cynthia K. Y., Sartorius, Rossella, Zare, Ehsan Nazarzadeh, Rabiee, Navid, Wu, Wei-Xi, Paiva-Santos, Ana Cláudia, Wang, Xiang-Dong, Yu, Cheng-Zhong, Tay, Franklin R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951506/
https://www.ncbi.nlm.nih.gov/pubmed/36829246
http://dx.doi.org/10.1186/s40779-023-00443-1
Descripción
Sumario:Fungi and bacteria afflict humans with innumerous pathogen-related infections and ailments. Most of the commonly employed microbicidal agents target commensal and pathogenic microorganisms without discrimination. To distinguish and fight the pathogenic species out of the microflora, novel antimicrobials have been developed that selectively target specific bacteria and fungi. The cell wall features and antimicrobial mechanisms that these microorganisms involved in are highlighted in the present review. This is followed by reviewing the design of antimicrobials that selectively combat a specific community of microbes including Gram-positive and Gram-negative bacterial strains as well as fungi. Finally, recent advances in the antimicrobial immunomodulation strategy that enables treating microorganism infections with high specificity are reviewed. These basic tenets will enable the avid reader to design novel approaches and compounds for antibacterial and antifungal applications.