Cargando…
2D/3D Non-Rigid Image Registration via Two Orthogonal X-ray Projection Images for Lung Tumor Tracking
Two-dimensional (2D)/three-dimensional (3D) registration is critical in clinical applications. However, existing methods suffer from long alignment times and high doses. In this paper, a non-rigid 2D/3D registration method based on deep learning with orthogonal angle projections is proposed. The app...
Autores principales: | Dong, Guoya, Dai, Jingjing, Li, Na, Zhang, Chulong, He, Wenfeng, Liu, Lin, Chan, Yinping, Li, Yunhui, Xie, Yaoqin, Liang, Xiaokun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951849/ https://www.ncbi.nlm.nih.gov/pubmed/36829638 http://dx.doi.org/10.3390/bioengineering10020144 |
Ejemplares similares
-
Incorporating the synthetic CT image for improving the performance of deformable image registration between planning CT and cone-beam CT
por: Li, Na, et al.
Publicado: (2023) -
Robust Orthogonal-View 2-D/3-D Rigid Registration for Minimally Invasive Surgery
por: An, Zhou, et al.
Publicado: (2021) -
Deep Learning Segmentation in 2D X-ray Images and Non-Rigid Registration in Multi-Modality Images of Coronary Arteries
por: Park, Taeyong, et al.
Publicado: (2022) -
Non-rigid image registration of 4D-MRI data for improved delineation of moving tumors
por: Weick, Stefan, et al.
Publicado: (2020) -
Non-Rigid Registration for High-Resolution Retinal Imaging
por: Mujat, Mircea, et al.
Publicado: (2023)