Cargando…
Improving Data-Efficiency and Robustness of Medical Imaging Segmentation Using Inpainting-Based Self-Supervised Learning
We systematically evaluate the training methodology and efficacy of two inpainting-based pretext tasks of context prediction and context restoration for medical image segmentation using self-supervised learning (SSL). Multiple versions of self-supervised U-Net models were trained to segment MRI and...
Autores principales: | Dominic, Jeffrey, Bhaskhar, Nandita, Desai, Arjun D., Schmidt, Andrew, Rubin, Elka, Gunel, Beliz, Gold, Garry E., Hargreaves, Brian A., Lenchik, Leon, Boutin, Robert, Chaudhari, Akshay S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951871/ https://www.ncbi.nlm.nih.gov/pubmed/36829701 http://dx.doi.org/10.3390/bioengineering10020207 |
Ejemplares similares
-
Robust detrending, rereferencing, outlier detection, and inpainting for multichannel data
por: de Cheveigné, Alain, et al.
Publicado: (2018) -
Inpainting and denoising challenges
por: Escalera, Sergio, et al.
Publicado: (2019) -
Improving the Segmentation Accuracy of Ovarian-Tumor Ultrasound Images Using Image Inpainting
por: Chen, Lijiang, et al.
Publicado: (2023) -
Contour Detection and Completion for Inpainting and Segmentation Based on Topological Gradient and Fast Marching Algorithms
por: Auroux, Didier, et al.
Publicado: (2011) -
Image-Based Place Recognition Using Semantic Segmentation and Inpainting to Remove Dynamic Objects
por: Liu, Linrunjia, et al.
Publicado: (2020)