Cargando…
Towards Ready-to-Use Iron-Crosslinked Alginate Beads as Mesenchymal Stem Cell Carriers
Micro-carriers, thanks to high surface/volume ratio, are widely studied as mesenchymal stem cell (MSCs) in vitro substrate for proliferation at clinical rate. In particular, Ca-alginate-based biomaterials (sodium alginate crosslinked with CaCl(2)) are commonly investigated. However, Ca-alginate show...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951883/ https://www.ncbi.nlm.nih.gov/pubmed/36829657 http://dx.doi.org/10.3390/bioengineering10020163 |
Sumario: | Micro-carriers, thanks to high surface/volume ratio, are widely studied as mesenchymal stem cell (MSCs) in vitro substrate for proliferation at clinical rate. In particular, Ca-alginate-based biomaterials (sodium alginate crosslinked with CaCl(2)) are commonly investigated. However, Ca-alginate shows low bioactivity and requires functionalization, increasing labor work and costs. In contrast, films of sodium alginate crosslinked with iron chloride (Fe-alginate) have shown good bioactivity with fibroblasts, but MSCs studies are lacking. We propose a first proof-of-concept study of Fe-alginate beads supporting MSCs proliferation without functionalization. Macro- and micro-carriers were prepared (extrusion and electrospray) and we report for the first time Fe-alginate electrospraying optimization. FTIR spectra, stability with various mannuronic acids/guluronic acids (M/G) ratios and size distribution were analyzed before performing cell culture. After confirming literature results on films with human MSCs, we showed that Macro-Fe-alginate beads offered a better environment for MSCs adhesion than Ca-alginate. We concluded that Fe-alginate beads showed great potential as ready-to-use carriers. |
---|