Cargando…
Fully Automatic Liver and Tumor Segmentation from CT Image Using an AIM-Unet
The segmentation of the liver is a difficult process due to the changes in shape, border, and density that occur in each section in computed tomography (CT) images. In this study, the Adding Inception Module-Unet (AIM-Unet) model, which is a hybridization of convolutional neural networks-based Unet...
Autores principales: | Özcan, Fırat, Uçan, Osman Nuri, Karaçam, Songül, Tunçman, Duygu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9951904/ https://www.ncbi.nlm.nih.gov/pubmed/36829709 http://dx.doi.org/10.3390/bioengineering10020215 |
Ejemplares similares
-
Investigation of Radiochromic Film Use for Source Position Verification through a LINAC On-Board Imager (OBI)
por: Karaçam, Songül Çavdar, et al.
Publicado: (2023) -
Fully Automatic Segmentation and Three-Dimensional Reconstruction of the Liver in CT Images
por: Wang, ZhenZhou, et al.
Publicado: (2018) -
COVID TV-Unet: Segmenting COVID-19 chest CT images using connectivity imposed Unet
por: Saeedizadeh, Narges, et al.
Publicado: (2021) -
MID-UNet: Multi-input directional UNet for COVID-19 lung infection segmentation from CT images
por: Chi, Jianning, et al.
Publicado: (2022) -
A Deep Learning Approach for Liver and Tumor Segmentation in CT Images Using ResUNet
por: Rahman, Hameedur, et al.
Publicado: (2022)