Cargando…
The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit
As a crucial and vulnerable component of the lower extremities, the medial gastrocnemius–Achilles tendon unit (gMTU) plays a significant role in sport performance and injury prevention during long-distance running. However, how habitual foot strike patterns influence the morphology of the gMTU remai...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952108/ https://www.ncbi.nlm.nih.gov/pubmed/36829758 http://dx.doi.org/10.3390/bioengineering10020264 |
_version_ | 1784893548546490368 |
---|---|
author | Li, Lu Wu, Kaicheng Deng, Liqin Liu, Cuixian Fu, Weijie |
author_facet | Li, Lu Wu, Kaicheng Deng, Liqin Liu, Cuixian Fu, Weijie |
author_sort | Li, Lu |
collection | PubMed |
description | As a crucial and vulnerable component of the lower extremities, the medial gastrocnemius–Achilles tendon unit (gMTU) plays a significant role in sport performance and injury prevention during long-distance running. However, how habitual foot strike patterns influence the morphology of the gMTU remains unclear. Therefore, this study aimed to explore the effects of two main foot strike patterns on the morphological and mechanical characteristics of the gMTU. Long-distance male runners with habitual forefoot (FFS group, n = 10) and rearfoot strike patterns (RFS group, n = 10) and male non-runners (NR group, n = 10) were recruited. A Terason uSmart 3300 ultrasonography system was used to image the medial gastrocnemius (MG) and Achilles tendon, Image J software to analyze the morphology, and a dynamometer to determine plantar flexion torque during maximal voluntary isometric contractions. The participants first performed a 5-minute warm up; then, the morphological measurements of MG and AT were recorded in a static condition; finally, the MVICs test was conducted to investigate the mechanical function of the gMTU. One-way ANOVA and nonparametric tests were used for data analysis. The significance level was set at a p value of <0.05. The muscle fascicle length (FL) (FFS: 67.3 ± 12.7, RFS: 62.5 ± 7.6, NRs: 55.9 ± 2.0, η2 = 0.187), normalized FL (FFS: 0.36 ± 0.48, RFS: 0.18 ± 0.03, NRs: 0.16 ± 0.01, η2 = 0.237), and pennation angle (PA) (FFS: 16.2 ± 1.9, RFS: 18.9 ± 2.8, NRs: 19.3 ± 2.4, η2 = 0.280) significantly differed between the groups. Specifically, the FL and normalized FL were longer in the FFS group than in the NR group (p < 0.05), while the PA was smaller in the FFS group than in the NR group (p < 0.05). Conclusion: Long-term running with a forefoot strike pattern could significantly affect the FL and PA of the MG. A forefoot strike pattern could lead to a longer FL and a smaller PA, indicating an FFS pattern could protect the MG from strain under repetitive high loads. |
format | Online Article Text |
id | pubmed-9952108 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99521082023-02-25 The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit Li, Lu Wu, Kaicheng Deng, Liqin Liu, Cuixian Fu, Weijie Bioengineering (Basel) Article As a crucial and vulnerable component of the lower extremities, the medial gastrocnemius–Achilles tendon unit (gMTU) plays a significant role in sport performance and injury prevention during long-distance running. However, how habitual foot strike patterns influence the morphology of the gMTU remains unclear. Therefore, this study aimed to explore the effects of two main foot strike patterns on the morphological and mechanical characteristics of the gMTU. Long-distance male runners with habitual forefoot (FFS group, n = 10) and rearfoot strike patterns (RFS group, n = 10) and male non-runners (NR group, n = 10) were recruited. A Terason uSmart 3300 ultrasonography system was used to image the medial gastrocnemius (MG) and Achilles tendon, Image J software to analyze the morphology, and a dynamometer to determine plantar flexion torque during maximal voluntary isometric contractions. The participants first performed a 5-minute warm up; then, the morphological measurements of MG and AT were recorded in a static condition; finally, the MVICs test was conducted to investigate the mechanical function of the gMTU. One-way ANOVA and nonparametric tests were used for data analysis. The significance level was set at a p value of <0.05. The muscle fascicle length (FL) (FFS: 67.3 ± 12.7, RFS: 62.5 ± 7.6, NRs: 55.9 ± 2.0, η2 = 0.187), normalized FL (FFS: 0.36 ± 0.48, RFS: 0.18 ± 0.03, NRs: 0.16 ± 0.01, η2 = 0.237), and pennation angle (PA) (FFS: 16.2 ± 1.9, RFS: 18.9 ± 2.8, NRs: 19.3 ± 2.4, η2 = 0.280) significantly differed between the groups. Specifically, the FL and normalized FL were longer in the FFS group than in the NR group (p < 0.05), while the PA was smaller in the FFS group than in the NR group (p < 0.05). Conclusion: Long-term running with a forefoot strike pattern could significantly affect the FL and PA of the MG. A forefoot strike pattern could lead to a longer FL and a smaller PA, indicating an FFS pattern could protect the MG from strain under repetitive high loads. MDPI 2023-02-17 /pmc/articles/PMC9952108/ /pubmed/36829758 http://dx.doi.org/10.3390/bioengineering10020264 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Li, Lu Wu, Kaicheng Deng, Liqin Liu, Cuixian Fu, Weijie The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit |
title | The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit |
title_full | The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit |
title_fullStr | The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit |
title_full_unstemmed | The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit |
title_short | The Effects of Habitual Foot Strike Patterns on the Morphology and Mechanical Function of the Medial Gastrocnemius–Achilles Tendon Unit |
title_sort | effects of habitual foot strike patterns on the morphology and mechanical function of the medial gastrocnemius–achilles tendon unit |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952108/ https://www.ncbi.nlm.nih.gov/pubmed/36829758 http://dx.doi.org/10.3390/bioengineering10020264 |
work_keys_str_mv | AT lilu theeffectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT wukaicheng theeffectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT dengliqin theeffectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT liucuixian theeffectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT fuweijie theeffectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT lilu effectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT wukaicheng effectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT dengliqin effectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT liucuixian effectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit AT fuweijie effectsofhabitualfootstrikepatternsonthemorphologyandmechanicalfunctionofthemedialgastrocnemiusachillestendonunit |