Cargando…
Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process
A low-cost, fast, dependable, repeatable, non-invasive, portable, and simple-to-use vascular screening tool for coronary artery diseases (CADs) is preferred. Photoplethysmography (PPG), a low-cost optical pulse wave technology, is one method with this potential. PPG signals come from changes in the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952145/ https://www.ncbi.nlm.nih.gov/pubmed/36829743 http://dx.doi.org/10.3390/bioengineering10020249 |
_version_ | 1784893557944877056 |
---|---|
author | Al Fahoum, Amjed S. Abu Al-Haija, Ansam Omar Alshraideh, Hussam A. |
author_facet | Al Fahoum, Amjed S. Abu Al-Haija, Ansam Omar Alshraideh, Hussam A. |
author_sort | Al Fahoum, Amjed S. |
collection | PubMed |
description | A low-cost, fast, dependable, repeatable, non-invasive, portable, and simple-to-use vascular screening tool for coronary artery diseases (CADs) is preferred. Photoplethysmography (PPG), a low-cost optical pulse wave technology, is one method with this potential. PPG signals come from changes in the amount of blood in the microvascular bed of tissue. Therefore, these signals can be used to figure out anomalies within the cardiovascular system. This work shows how to use PPG signals and feature selection-based classifiers to identify cardiorespiratory disorders based on the extraction of time-domain features. Data were collected from 360 healthy and cardiovascular disease patients. For analysis and identification, five types of cardiovascular disorders were considered. The categories of cardiovascular diseases were identified using a two-stage classification process. The first stage was utilized to differentiate between healthy and unhealthy subjects. Subjects who were found to be abnormal were then entered into the second stage classifier, which was used to determine the type of the disease. Seven different classifiers were employed to classify the dataset. Based on the subset of features found by the classifier, the Naïve Bayes classifier obtained the best test accuracy, with 94.44% for the first stage and 89.37% for the second stage. The results of this study show how vital the PPG signal is. Many time-domain parts of the PPG signal can be easily extracted and analyzed to find out if there are problems with the heart. The results were accurate and precise enough that they did not need to be looked at or analyzed further. The PPG classifier built on a simple microcontroller will work better than more expensive ones and will not make the patient nervous. |
format | Online Article Text |
id | pubmed-9952145 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99521452023-02-25 Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process Al Fahoum, Amjed S. Abu Al-Haija, Ansam Omar Alshraideh, Hussam A. Bioengineering (Basel) Article A low-cost, fast, dependable, repeatable, non-invasive, portable, and simple-to-use vascular screening tool for coronary artery diseases (CADs) is preferred. Photoplethysmography (PPG), a low-cost optical pulse wave technology, is one method with this potential. PPG signals come from changes in the amount of blood in the microvascular bed of tissue. Therefore, these signals can be used to figure out anomalies within the cardiovascular system. This work shows how to use PPG signals and feature selection-based classifiers to identify cardiorespiratory disorders based on the extraction of time-domain features. Data were collected from 360 healthy and cardiovascular disease patients. For analysis and identification, five types of cardiovascular disorders were considered. The categories of cardiovascular diseases were identified using a two-stage classification process. The first stage was utilized to differentiate between healthy and unhealthy subjects. Subjects who were found to be abnormal were then entered into the second stage classifier, which was used to determine the type of the disease. Seven different classifiers were employed to classify the dataset. Based on the subset of features found by the classifier, the Naïve Bayes classifier obtained the best test accuracy, with 94.44% for the first stage and 89.37% for the second stage. The results of this study show how vital the PPG signal is. Many time-domain parts of the PPG signal can be easily extracted and analyzed to find out if there are problems with the heart. The results were accurate and precise enough that they did not need to be looked at or analyzed further. The PPG classifier built on a simple microcontroller will work better than more expensive ones and will not make the patient nervous. MDPI 2023-02-13 /pmc/articles/PMC9952145/ /pubmed/36829743 http://dx.doi.org/10.3390/bioengineering10020249 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Al Fahoum, Amjed S. Abu Al-Haija, Ansam Omar Alshraideh, Hussam A. Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process |
title | Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process |
title_full | Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process |
title_fullStr | Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process |
title_full_unstemmed | Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process |
title_short | Identification of Coronary Artery Diseases Using Photoplethysmography Signals and Practical Feature Selection Process |
title_sort | identification of coronary artery diseases using photoplethysmography signals and practical feature selection process |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952145/ https://www.ncbi.nlm.nih.gov/pubmed/36829743 http://dx.doi.org/10.3390/bioengineering10020249 |
work_keys_str_mv | AT alfahoumamjeds identificationofcoronaryarterydiseasesusingphotoplethysmographysignalsandpracticalfeatureselectionprocess AT abualhaijaansamomar identificationofcoronaryarterydiseasesusingphotoplethysmographysignalsandpracticalfeatureselectionprocess AT alshraidehhussama identificationofcoronaryarterydiseasesusingphotoplethysmographysignalsandpracticalfeatureselectionprocess |