Cargando…
Continual Learning of a Transformer-Based Deep Learning Classifier Using an Initial Model from Action Observation EEG Data to Online Motor Imagery Classification
The motor imagery (MI)-based brain computer interface (BCI) is an intuitive interface that enables users to communicate with external environments through their minds. However, current MI-BCI systems ask naïve subjects to perform unfamiliar MI tasks with simple textual instruction or a visual/audito...
Autores principales: | Lee, Po-Lei, Chen, Sheng-Hao, Chang, Tzu-Chien, Lee, Wei-Kung, Hsu, Hao-Teng, Chang, Hsiao-Huang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952173/ https://www.ncbi.nlm.nih.gov/pubmed/36829681 http://dx.doi.org/10.3390/bioengineering10020186 |
Ejemplares similares
-
On the Deep Learning Models for EEG-Based Brain-Computer Interface Using Motor Imagery
por: Zhu, Hao, et al.
Publicado: (2022) -
Motor Imagery EEG Classification Based on Transfer Learning and Multi-Scale Convolution Network
por: Chang, Zhanyuan, et al.
Publicado: (2022) -
Recognition of EEG Signal Motor Imagery Intention Based on Deep Multi-View Feature Learning
por: Xu, Jiacan, et al.
Publicado: (2020) -
Sparse Representation-Based Extreme Learning Machine for Motor Imagery EEG Classification
por: She, Qingshan, et al.
Publicado: (2018) -
EEG Classification of Motor Imagery Using a Novel Deep Learning Framework
por: Dai, Mengxi, et al.
Publicado: (2019)