Cargando…
Fet-Net Algorithm for Automatic Detection of Fetal Orientation in Fetal MRI
Identifying fetal orientation is essential for determining the mode of delivery and for sequence planning in fetal magnetic resonance imaging (MRI). This manuscript describes a deep learning algorithm named Fet-Net, composed of convolutional neural networks (CNNs), which allows for the automatic det...
Autores principales: | Eisenstat, Joshua, Wagner, Matthias W., Vidarsson, Logi, Ertl-Wagner, Birgit, Sussman, Dafna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952178/ https://www.ncbi.nlm.nih.gov/pubmed/36829634 http://dx.doi.org/10.3390/bioengineering10020140 |
Ejemplares similares
-
Automatic Artifact Detection Algorithm in Fetal MRI
por: Lim, Adam, et al.
Publicado: (2022) -
AFNet Algorithm for Automatic Amniotic Fluid Segmentation from Fetal MRI
por: Costanzo, Alejo, et al.
Publicado: (2023) -
Fetal Organ Anomaly Classification Network for Identifying Organ Anomalies in Fetal MRI
por: Lo, Justin, et al.
Publicado: (2022) -
Cross Attention Squeeze Excitation Network (CASE-Net) for Whole Body Fetal MRI Segmentation
por: Lo, Justin, et al.
Publicado: (2021) -
MRI Volumetric Analysis of the Hypothalamus and Limbic System across the Pediatric Age Span
por: Wagner, Matthias W., et al.
Publicado: (2023)