Cargando…

Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study

The polypeptide Nisin is characterized by antibacterial properties, making it a compound with many applications, mainly in the food industry. As a result, a deeper understanding of its behaviour, especially after its dissolution in water, is of the utmost importance. This could be possible through t...

Descripción completa

Detalles Bibliográficos
Autores principales: Tryfon, Afrodite, Siafarika, Panagiota, Kouderis, Constantine, Kaziannis, Spyridon, Boghosian, Soghomon, Kalampounias, Angelos G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952239/
https://www.ncbi.nlm.nih.gov/pubmed/36830132
http://dx.doi.org/10.3390/antibiotics12020221
_version_ 1784893581324976128
author Tryfon, Afrodite
Siafarika, Panagiota
Kouderis, Constantine
Kaziannis, Spyridon
Boghosian, Soghomon
Kalampounias, Angelos G.
author_facet Tryfon, Afrodite
Siafarika, Panagiota
Kouderis, Constantine
Kaziannis, Spyridon
Boghosian, Soghomon
Kalampounias, Angelos G.
author_sort Tryfon, Afrodite
collection PubMed
description The polypeptide Nisin is characterized by antibacterial properties, making it a compound with many applications, mainly in the food industry. As a result, a deeper understanding of its behaviour, especially after its dissolution in water, is of the utmost importance. This could be possible through the study of aqueous solutions of Nisin by combining vibrational and acoustic spectroscopic techniques. The velocity and attenuation of ultrasonic waves propagating in aqueous solutions of the polypeptide Nisin were measured as a function of concentration and temperature. The computational investigation of the molecular docking between Nisin monomeric units revealed the formation of dimeric units. The main chemical changes occurring in Nisin structure in the aqueous environment were tracked using Raman spectroscopy, and special spectral markers were used to establish the underlying structural mechanism. Spectral changes evidenced the presence of the dimerization reaction between Nisin monomeric species. The UV/Vis absorption spectra were dominated by the presence of π → π* transitions in the peptide bonds attributed to secondary structural elements such as α-helix, β-sheets and random coils. The analysis of the acoustic spectra revealed that the processes primarily responsible for the observed chemical relaxations are probably the conformational change between possible conformers of Nisin and its self-aggregation mechanism, namely, the dimerization reaction. The activation enthalpy and the enthalpy difference between the two isomeric forms were estimated to be equal to ΔH(1)* = 0.354 ± 0.028 kcal/mol and ΔH(1)(0) = 3.008 ± 0.367 kcal/mol, respectively. The corresponding thermodynamic parameters of the self-aggregation mechanism were found to be ΔH(2)* = 0.261 ± 0.004 kcal/mol and ΔH(2)(0) = 3.340 ± 0.364 kcal/mol. The effect of frequency on the excess sound absorption of Nisin solutions enabled us to estimate the rate constants of the self-aggregation mechanism and evaluate the isentropic and isothermal volume changes associated with the relaxation processes occurring in this system. The results are discussed in relation to theoretical and experimental findings.
format Online
Article
Text
id pubmed-9952239
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99522392023-02-25 Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study Tryfon, Afrodite Siafarika, Panagiota Kouderis, Constantine Kaziannis, Spyridon Boghosian, Soghomon Kalampounias, Angelos G. Antibiotics (Basel) Article The polypeptide Nisin is characterized by antibacterial properties, making it a compound with many applications, mainly in the food industry. As a result, a deeper understanding of its behaviour, especially after its dissolution in water, is of the utmost importance. This could be possible through the study of aqueous solutions of Nisin by combining vibrational and acoustic spectroscopic techniques. The velocity and attenuation of ultrasonic waves propagating in aqueous solutions of the polypeptide Nisin were measured as a function of concentration and temperature. The computational investigation of the molecular docking between Nisin monomeric units revealed the formation of dimeric units. The main chemical changes occurring in Nisin structure in the aqueous environment were tracked using Raman spectroscopy, and special spectral markers were used to establish the underlying structural mechanism. Spectral changes evidenced the presence of the dimerization reaction between Nisin monomeric species. The UV/Vis absorption spectra were dominated by the presence of π → π* transitions in the peptide bonds attributed to secondary structural elements such as α-helix, β-sheets and random coils. The analysis of the acoustic spectra revealed that the processes primarily responsible for the observed chemical relaxations are probably the conformational change between possible conformers of Nisin and its self-aggregation mechanism, namely, the dimerization reaction. The activation enthalpy and the enthalpy difference between the two isomeric forms were estimated to be equal to ΔH(1)* = 0.354 ± 0.028 kcal/mol and ΔH(1)(0) = 3.008 ± 0.367 kcal/mol, respectively. The corresponding thermodynamic parameters of the self-aggregation mechanism were found to be ΔH(2)* = 0.261 ± 0.004 kcal/mol and ΔH(2)(0) = 3.340 ± 0.364 kcal/mol. The effect of frequency on the excess sound absorption of Nisin solutions enabled us to estimate the rate constants of the self-aggregation mechanism and evaluate the isentropic and isothermal volume changes associated with the relaxation processes occurring in this system. The results are discussed in relation to theoretical and experimental findings. MDPI 2023-01-20 /pmc/articles/PMC9952239/ /pubmed/36830132 http://dx.doi.org/10.3390/antibiotics12020221 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Tryfon, Afrodite
Siafarika, Panagiota
Kouderis, Constantine
Kaziannis, Spyridon
Boghosian, Soghomon
Kalampounias, Angelos G.
Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study
title Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study
title_full Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study
title_fullStr Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study
title_full_unstemmed Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study
title_short Evidence of Self-Association and Conformational Change in Nisin Antimicrobial Polypeptide Solutions: A Combined Raman and Ultrasonic Relaxation Spectroscopic and Theoretical Study
title_sort evidence of self-association and conformational change in nisin antimicrobial polypeptide solutions: a combined raman and ultrasonic relaxation spectroscopic and theoretical study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952239/
https://www.ncbi.nlm.nih.gov/pubmed/36830132
http://dx.doi.org/10.3390/antibiotics12020221
work_keys_str_mv AT tryfonafrodite evidenceofselfassociationandconformationalchangeinnisinantimicrobialpolypeptidesolutionsacombinedramanandultrasonicrelaxationspectroscopicandtheoreticalstudy
AT siafarikapanagiota evidenceofselfassociationandconformationalchangeinnisinantimicrobialpolypeptidesolutionsacombinedramanandultrasonicrelaxationspectroscopicandtheoreticalstudy
AT kouderisconstantine evidenceofselfassociationandconformationalchangeinnisinantimicrobialpolypeptidesolutionsacombinedramanandultrasonicrelaxationspectroscopicandtheoreticalstudy
AT kaziannisspyridon evidenceofselfassociationandconformationalchangeinnisinantimicrobialpolypeptidesolutionsacombinedramanandultrasonicrelaxationspectroscopicandtheoreticalstudy
AT boghosiansoghomon evidenceofselfassociationandconformationalchangeinnisinantimicrobialpolypeptidesolutionsacombinedramanandultrasonicrelaxationspectroscopicandtheoreticalstudy
AT kalampouniasangelosg evidenceofselfassociationandconformationalchangeinnisinantimicrobialpolypeptidesolutionsacombinedramanandultrasonicrelaxationspectroscopicandtheoreticalstudy