Cargando…
Improving the Segmentation Accuracy of Ovarian-Tumor Ultrasound Images Using Image Inpainting
Diagnostic results can be radically influenced by the quality of 2D ovarian-tumor ultrasound images. However, clinically processed 2D ovarian-tumor ultrasound images contain many artificially recognized symbols, such as fingers, crosses, dashed lines, and letters which assist artificial intelligence...
Autores principales: | Chen, Lijiang, Qiao, Changkun, Wu, Meijing, Cai, Linghan, Yin, Cong, Yang, Mukun, Sang, Xiubo, Bai, Wenpei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952248/ https://www.ncbi.nlm.nih.gov/pubmed/36829679 http://dx.doi.org/10.3390/bioengineering10020184 |
Ejemplares similares
-
Deep convolutional neural networks for multiple histologic types of ovarian tumors classification in ultrasound images
por: Wu, Meijing, et al.
Publicado: (2023) -
An Automatic Image Inpainting Algorithm Based on FCM
por: Liu, Jiansheng, et al.
Publicado: (2014) -
Image Inpainting Methods Evaluation and Improvement
por: Vreja, Raluca, et al.
Publicado: (2014) -
Non-Local and Multi-Scale Mechanisms for Image Inpainting
por: He, Xu, et al.
Publicado: (2021) -
Image-Based Place Recognition Using Semantic Segmentation and Inpainting to Remove Dynamic Objects
por: Liu, Linrunjia, et al.
Publicado: (2020)