Cargando…

The Threat of Adversarial Attack on a COVID-19 CT Image-Based Deep Learning System

The coronavirus disease 2019 (COVID-19) rapidly spread around the world, and resulted in a global pandemic. Applying artificial intelligence to COVID-19 research can produce very exciting results. However, most research has focused on applying AI techniques in the study of COVID-19, but has ignored...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Yang, Liu, Shaoying
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952300/
https://www.ncbi.nlm.nih.gov/pubmed/36829688
http://dx.doi.org/10.3390/bioengineering10020194
Descripción
Sumario:The coronavirus disease 2019 (COVID-19) rapidly spread around the world, and resulted in a global pandemic. Applying artificial intelligence to COVID-19 research can produce very exciting results. However, most research has focused on applying AI techniques in the study of COVID-19, but has ignored the security and reliability of AI systems. In this paper, we explore adversarial attacks on a deep learning system based on COVID-19 CT images with the aim of helping to address this problem. Firstly, we built a deep learning system that could identify COVID-19 CT images and non-COVID-19 CT images with an average accuracy of 76.27%. Secondly, we attacked the pretrained model with an adversarial attack algorithm, i.e., FGSM, to cause the COVID-19 deep learning system to misclassify the CT images, and the classification accuracy of non-COVID-19 CT images dropped from 80% to 0%. Finally, in response to this attack, we proposed how a more secure and reliable deep learning model based on COVID-19 medical images could be built. This research is based on a COVID-19 CT image recognition system, which studies the security of a COVID-19 CT image-based deep learning system. We hope to draw more researchers’ attention to the security and reliability of medical deep learning systems.