Cargando…
Jointly Learning Non-Cartesian k-Space Trajectories and Reconstruction Networks for 2D and 3D MR Imaging through Projection
Compressed sensing in magnetic resonance imaging essentially involves the optimization of (1) the sampling pattern in k-space under MR hardware constraints and (2) image reconstruction from undersampled k-space data. Recently, deep learning methods have allowed the community to address both problems...
Autores principales: | Radhakrishna, Chaithya Giliyar, Ciuciu, Philippe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952463/ https://www.ncbi.nlm.nih.gov/pubmed/36829652 http://dx.doi.org/10.3390/bioengineering10020158 |
Ejemplares similares
-
Calibration-Less Multi-Coil Compressed Sensing Magnetic Resonance Image Reconstruction Based on OSCAR Regularization
por: El Gueddari, Loubna, et al.
Publicado: (2021) -
Optimized respiratory‐resolved motion‐compensated 3D Cartesian coronary MR angiography
por: Correia, Teresa, et al.
Publicado: (2018) -
Iterative static field map estimation for off‐resonance correction in non‐Cartesian susceptibility weighted imaging
por: Daval‐Frérot, Guillaume, et al.
Publicado: (2022) -
Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory
por: Usman, M., et al.
Publicado: (2017) -
Accelerating compressed sensing in parallel imaging reconstructions using an efficient circulant preconditioner for cartesian trajectories
por: Koolstra, Kirsten, et al.
Publicado: (2018)