Cargando…
Semi-Supervised Medical Image Segmentation Guided by Bi-Directional Constrained Dual-Task Consistency
Background: Medical image processing tasks represented by multi-object segmentation are of great significance for surgical planning, robot-assisted surgery, and surgical safety. However, the exceptionally low contrast among tissues and limited available annotated data makes developing an automatic s...
Autores principales: | Pan, Ming-Zhang, Liao, Xiao-Lan, Li, Zhen, Deng, Ya-Wen, Chen, Yuan, Bian, Gui-Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952498/ https://www.ncbi.nlm.nih.gov/pubmed/36829720 http://dx.doi.org/10.3390/bioengineering10020225 |
Ejemplares similares
-
Revisiting Consistency for Semi-Supervised Semantic Segmentation †
por: Grubišić, Ivan, et al.
Publicado: (2023) -
Semi-Supervised Semantic Segmentation of Remote Sensing Images Based on Dual Cross-Entropy Consistency
por: Cui, Mengtian, et al.
Publicado: (2023) -
SSMD-UNet: semi-supervised multi-task decoders network for diabetic retinopathy segmentation
por: Ullah, Zahid, et al.
Publicado: (2023) -
RCTE: A reliable and consistent temporal-ensembling framework for semi-supervised segmentation of COVID-19 lesions
por: Ding, Weiping, et al.
Publicado: (2021) -
DBF-Net: a semi-supervised dual-task balanced fusion network for segmenting infected regions from lung CT images
por: Lu, Xiaoyan, et al.
Publicado: (2022)