Cargando…
Comparing 3D, 2.5D, and 2D Approaches to Brain Image Auto-Segmentation
Deep-learning methods for auto-segmenting brain images either segment one slice of the image (2D), five consecutive slices of the image (2.5D), or an entire volume of the image (3D). Whether one approach is superior for auto-segmenting brain images is not known. We compared these three approaches (3...
Autores principales: | Avesta, Arman, Hossain, Sajid, Lin, MingDe, Aboian, Mariam, Krumholz, Harlan M., Aneja, Sanjay |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952534/ https://www.ncbi.nlm.nih.gov/pubmed/36829675 http://dx.doi.org/10.3390/bioengineering10020181 |
Ejemplares similares
-
Comparing Detection Schemes for Adversarial Images against Deep Learning Models for Cancer Imaging
por: Joel, Marina Z., et al.
Publicado: (2023) -
A Large Open Access Dataset of Brain Metastasis 3D Segmentations with Clinical and Imaging Feature Information
por: Ramakrishnan, Divya, et al.
Publicado: (2023) -
PACS-Integrated Tools for Peritumoral Edema Volumetrics Provide Additional Information to RANO-BM-Based Assessment of Lung Cancer Brain Metastases after Stereotactic Radiotherapy: A Pilot Study
por: Kaur, Manpreet, et al.
Publicado: (2023) -
2.5D and 3D segmentation of brain metastases with deep learning on multinational MRI data
por: Ottesen, Jon André, et al.
Publicado: (2023) -
Automated 2D, 2.5D, and 3D Segmentation of Coral Reef Pointclouds and Orthoprojections
por: Runyan, Hugh, et al.
Publicado: (2022)