Cargando…

Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges

Numerical models of the musculoskeletal system as investigative tools are an integral part of biomechanical and clinical research. While finite element modeling is primarily suitable for the examination of deformation states and internal stresses in flexible bodies, multibody modeling is based on th...

Descripción completa

Detalles Bibliográficos
Autores principales: Lerchl, Tanja, Nispel, Kati, Baum, Thomas, Bodden, Jannis, Senner, Veit, Kirschke, Jan S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952620/
https://www.ncbi.nlm.nih.gov/pubmed/36829696
http://dx.doi.org/10.3390/bioengineering10020202
Descripción
Sumario:Numerical models of the musculoskeletal system as investigative tools are an integral part of biomechanical and clinical research. While finite element modeling is primarily suitable for the examination of deformation states and internal stresses in flexible bodies, multibody modeling is based on the assumption of rigid bodies, that are connected via joints and flexible elements. This simplification allows the consideration of biomechanical systems from a holistic perspective and thus takes into account multiple influencing factors of mechanical loads. Being the source of major health issues worldwide, the human spine is subject to a variety of studies using these models to investigate and understand healthy and pathological biomechanics of the upper body. In this review, we summarize the current state-of-the-art literature on multibody models of the thoracolumbar spine and identify limitations and challenges related to current modeling approaches.