Cargando…
Utilizing Variants Identified with Multiple Genome-Wide Association Study Methods Optimizes Genomic Selection for Growth Traits in Pigs
SIMPLE SUMMARY: The accurate prediction of growth traits in genomic selection (GS) is essential for pig breeding. Here, we performed GS using variants identified with three genome-wide association study methods on four growth-related traits in Yorkshire and Landrace pigs. A total of 1485 loci relate...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952664/ https://www.ncbi.nlm.nih.gov/pubmed/36830509 http://dx.doi.org/10.3390/ani13040722 |
Sumario: | SIMPLE SUMMARY: The accurate prediction of growth traits in genomic selection (GS) is essential for pig breeding. Here, we performed GS using variants identified with three genome-wide association study methods on four growth-related traits in Yorkshire and Landrace pigs. A total of 1485 loci related to these traits and 24 candidate genes were mapped. Compared with using 60K SNP-chip data, GS with the pre-selected variants significantly improved prediction accuracies by 4 to 46% in genomic best linear unbiased prediction (GBLUP) models, and 5 to 27% in a two-kernel based GBLUP model for the four traits. ABSTRACT: Improving the prediction accuracies of economically important traits in genomic selection (GS) is a main objective for researchers and breeders in the livestock industry. This study aims at utilizing potentially functional SNPs and QTLs identified with various genome-wide association study (GWAS) models in GS of pig growth traits. We used three well-established GWAS methods, including the mixed linear model, Bayesian model and meta-analysis, as well as 60K SNP-chip and whole genome sequence (WGS) data from 1734 Yorkshire and 1123 Landrace pigs to detect SNPs related to four growth traits: average daily gain, backfat thickness, body weight and birth weight. A total of 1485 significant loci and 24 candidate genes which are involved in skeletal muscle development, fatty deposition, lipid metabolism and insulin resistance were identified. Compared with using all SNP-chip data, GS with the pre-selected functional SNPs in the standard genomic best linear unbiased prediction (GBLUP), and a two-kernel based GBLUP model yielded average gains in accuracy by 4 to 46% (from 0.19 ± 0.07 to 0.56 ± 0.07) and 5 to 27% (from 0.16 ± 0.06 to 0.57 ± 0.05) for the four traits, respectively, suggesting that the prioritization of preselected functional markers in GS models had the potential to improve prediction accuracies for certain traits in livestock breeding. |
---|