Cargando…

Optimal Feature Selection-Based Dental Caries Prediction Model Using Machine Learning for Decision Support System

The high frequency of dental caries is a major public health concern worldwide. The condition is common, particularly in developing countries. Because there are no evident early-stage signs, dental caries frequently goes untreated. Meanwhile, early detection and timely clinical intervention are requ...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, In-Ae, Njimbouom, Soualihou Ngnamsie, Kim, Jeong-Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952690/
https://www.ncbi.nlm.nih.gov/pubmed/36829739
http://dx.doi.org/10.3390/bioengineering10020245
Descripción
Sumario:The high frequency of dental caries is a major public health concern worldwide. The condition is common, particularly in developing countries. Because there are no evident early-stage signs, dental caries frequently goes untreated. Meanwhile, early detection and timely clinical intervention are required to slow disease development. Machine learning (ML) models can benefit clinicians in the early detection of dental cavities through efficient and cost-effective computer-aided diagnoses. This study proposed a more effective method for diagnosing dental caries by integrating the GINI and mRMR algorithms with the GBDT classifier. Because just a few clinical test features are required for the diagnosis, this strategy could save time and money when screening for dental caries. The proposed method was compared to recently proposed dental procedures. Among these classifiers, the suggested GBDT trained with a reduced feature set achieved the best classification performance, with accuracy, F1-score, precision, and recall values of 95%, 93%, 99%, and 88%, respectively. Furthermore, the experimental results suggest that feature selection improved the performance of the various classifiers. The suggested method yielded a good predictive model for dental caries diagnosis, which might be used in more imbalanced medical datasets to identify disease more effectively.