Cargando…

NO and Heme Proteins: Cross-Talk between Heme and Cysteine Residues

Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which—among several other reactions—can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scaven...

Descripción completa

Detalles Bibliográficos
Autores principales: Verde, Cinzia, Giordano, Daniela, Bruno, Stefano
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952723/
https://www.ncbi.nlm.nih.gov/pubmed/36829880
http://dx.doi.org/10.3390/antiox12020321
Descripción
Sumario:Heme proteins are a diverse group that includes several unrelated families. Their biological function is mainly associated with the reactivity of the heme group, which—among several other reactions—can bind to and react with nitric oxide (NO) and other nitrogen compounds for their production, scavenging, and transport. The S-nitrosylation of cysteine residues, which also results from the reaction with NO and other nitrogen compounds, is a post-translational modification regulating protein activity, with direct effects on a variety of signaling pathways. Heme proteins are unique in exhibiting this dual reactivity toward NO, with reported examples of cross-reactivity between the heme and cysteine residues within the same protein. In this work, we review the literature on this interplay, with particular emphasis on heme proteins in which heme-dependent nitrosylation has been reported and those for which both heme nitrosylation and S-nitrosylation have been associated with biological functions.