Cargando…

The Complex Genetic and Epigenetic Regulation of the Nrf2 Pathways: A Review

Nrf2 is a major transcription factor that significantly regulates—directly or indirectly—more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In...

Descripción completa

Detalles Bibliográficos
Autores principales: McCord, Joe M., Gao, Bifeng, Hybertson, Brooks M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9952775/
https://www.ncbi.nlm.nih.gov/pubmed/36829925
http://dx.doi.org/10.3390/antiox12020366
Descripción
Sumario:Nrf2 is a major transcription factor that significantly regulates—directly or indirectly—more than 2000 genes. While many of these genes are involved in maintaining redox balance, others are involved in maintaining balance among metabolic pathways that are seemingly unrelated to oxidative stress. In the past 25 years, the number of factors involved in the activation, nuclear translocation, and deactivation of Nrf2 has continued to expand. The purpose of this review is to provide an overview of the remarkable complexity of the tortuous sequence of stop-and-go signals that not only regulate expression or repression, but may also modify transcriptional intensity as well as the specificity of promoter recognition, allowing fluidity of its gene expression profile depending on the various structural modifications the transcription factor encounters on its journey to the DNA. At present, more than 45 control points have been identified, many of which represent sites of action of the so-called Nrf2 activators. The complexity of the pathway and the synergistic interplay among combinations of control points help to explain the potential advantages seen with phytochemical compositions that simultaneously target multiple control points, compared to the traditional pharmaceutical paradigm of “one-drug, one-target”.