Cargando…
An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segment...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953018/ https://www.ncbi.nlm.nih.gov/pubmed/36830712 http://dx.doi.org/10.3390/biom13020343 |
_version_ | 1784893773714554880 |
---|---|
author | Duff, Lisa M. Scarsbrook, Andrew F. Ravikumar, Nishant Frood, Russell van Praagh, Gijs D. Mackie, Sarah L. Bailey, Marc A. Tarkin, Jason M. Mason, Justin C. van der Geest, Kornelis S. M. Slart, Riemer H. J. A. Morgan, Ann W. Tsoumpas, Charalampos |
author_facet | Duff, Lisa M. Scarsbrook, Andrew F. Ravikumar, Nishant Frood, Russell van Praagh, Gijs D. Mackie, Sarah L. Bailey, Marc A. Tarkin, Jason M. Mason, Justin C. van der Geest, Kornelis S. M. Slart, Riemer H. J. A. Morgan, Ann W. Tsoumpas, Charalampos |
author_sort | Duff, Lisa M. |
collection | PubMed |
description | The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A—RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C—Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience. |
format | Online Article Text |
id | pubmed-9953018 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99530182023-02-25 An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images Duff, Lisa M. Scarsbrook, Andrew F. Ravikumar, Nishant Frood, Russell van Praagh, Gijs D. Mackie, Sarah L. Bailey, Marc A. Tarkin, Jason M. Mason, Justin C. van der Geest, Kornelis S. M. Slart, Riemer H. J. A. Morgan, Ann W. Tsoumpas, Charalampos Biomolecules Article The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A—RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C—Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience. MDPI 2023-02-09 /pmc/articles/PMC9953018/ /pubmed/36830712 http://dx.doi.org/10.3390/biom13020343 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Duff, Lisa M. Scarsbrook, Andrew F. Ravikumar, Nishant Frood, Russell van Praagh, Gijs D. Mackie, Sarah L. Bailey, Marc A. Tarkin, Jason M. Mason, Justin C. van der Geest, Kornelis S. M. Slart, Riemer H. J. A. Morgan, Ann W. Tsoumpas, Charalampos An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images |
title | An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images |
title_full | An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images |
title_fullStr | An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images |
title_full_unstemmed | An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images |
title_short | An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images |
title_sort | automated method for artifical intelligence assisted diagnosis of active aortitis using radiomic analysis of fdg pet-ct images |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953018/ https://www.ncbi.nlm.nih.gov/pubmed/36830712 http://dx.doi.org/10.3390/biom13020343 |
work_keys_str_mv | AT dufflisam anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT scarsbrookandrewf anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT ravikumarnishant anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT froodrussell anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT vanpraaghgijsd anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT mackiesarahl anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT baileymarca anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT tarkinjasonm anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT masonjustinc anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT vandergeestkornelissm anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT slartriemerhja anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT morganannw anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT tsoumpascharalampos anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT dufflisam automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT scarsbrookandrewf automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT ravikumarnishant automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT froodrussell automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT vanpraaghgijsd automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT mackiesarahl automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT baileymarca automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT tarkinjasonm automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT masonjustinc automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT vandergeestkornelissm automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT slartriemerhja automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT morganannw automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages AT tsoumpascharalampos automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages |