Cargando…

An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images

The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segment...

Descripción completa

Detalles Bibliográficos
Autores principales: Duff, Lisa M., Scarsbrook, Andrew F., Ravikumar, Nishant, Frood, Russell, van Praagh, Gijs D., Mackie, Sarah L., Bailey, Marc A., Tarkin, Jason M., Mason, Justin C., van der Geest, Kornelis S. M., Slart, Riemer H. J. A., Morgan, Ann W., Tsoumpas, Charalampos
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953018/
https://www.ncbi.nlm.nih.gov/pubmed/36830712
http://dx.doi.org/10.3390/biom13020343
_version_ 1784893773714554880
author Duff, Lisa M.
Scarsbrook, Andrew F.
Ravikumar, Nishant
Frood, Russell
van Praagh, Gijs D.
Mackie, Sarah L.
Bailey, Marc A.
Tarkin, Jason M.
Mason, Justin C.
van der Geest, Kornelis S. M.
Slart, Riemer H. J. A.
Morgan, Ann W.
Tsoumpas, Charalampos
author_facet Duff, Lisa M.
Scarsbrook, Andrew F.
Ravikumar, Nishant
Frood, Russell
van Praagh, Gijs D.
Mackie, Sarah L.
Bailey, Marc A.
Tarkin, Jason M.
Mason, Justin C.
van der Geest, Kornelis S. M.
Slart, Riemer H. J. A.
Morgan, Ann W.
Tsoumpas, Charalampos
author_sort Duff, Lisa M.
collection PubMed
description The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A—RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C—Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience.
format Online
Article
Text
id pubmed-9953018
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99530182023-02-25 An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images Duff, Lisa M. Scarsbrook, Andrew F. Ravikumar, Nishant Frood, Russell van Praagh, Gijs D. Mackie, Sarah L. Bailey, Marc A. Tarkin, Jason M. Mason, Justin C. van der Geest, Kornelis S. M. Slart, Riemer H. J. A. Morgan, Ann W. Tsoumpas, Charalampos Biomolecules Article The aim of this study was to develop and validate an automated pipeline that could assist the diagnosis of active aortitis using radiomic imaging biomarkers derived from [18F]-Fluorodeoxyglucose Positron Emission Tomography-Computed Tomography (FDG PET-CT) images. The aorta was automatically segmented by convolutional neural network (CNN) on FDG PET-CT of aortitis and control patients. The FDG PET-CT dataset was split into training (43 aortitis:21 control), test (12 aortitis:5 control) and validation (24 aortitis:14 control) cohorts. Radiomic features (RF), including SUV metrics, were extracted from the segmented data and harmonized. Three radiomic fingerprints were constructed: A—RFs with high diagnostic utility removing highly correlated RFs; B used principal component analysis (PCA); C—Random Forest intrinsic feature selection. The diagnostic utility was evaluated with accuracy and area under the receiver operating characteristic curve (AUC). Several RFs and Fingerprints had high AUC values (AUC > 0.8), confirmed by balanced accuracy, across training, test and external validation datasets. Good diagnostic performance achieved across several multi-centre datasets suggests that a radiomic pipeline can be generalizable. These findings could be used to build an automated clinical decision tool to facilitate objective and standardized assessment regardless of observer experience. MDPI 2023-02-09 /pmc/articles/PMC9953018/ /pubmed/36830712 http://dx.doi.org/10.3390/biom13020343 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Duff, Lisa M.
Scarsbrook, Andrew F.
Ravikumar, Nishant
Frood, Russell
van Praagh, Gijs D.
Mackie, Sarah L.
Bailey, Marc A.
Tarkin, Jason M.
Mason, Justin C.
van der Geest, Kornelis S. M.
Slart, Riemer H. J. A.
Morgan, Ann W.
Tsoumpas, Charalampos
An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_full An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_fullStr An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_full_unstemmed An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_short An Automated Method for Artifical Intelligence Assisted Diagnosis of Active Aortitis Using Radiomic Analysis of FDG PET-CT Images
title_sort automated method for artifical intelligence assisted diagnosis of active aortitis using radiomic analysis of fdg pet-ct images
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953018/
https://www.ncbi.nlm.nih.gov/pubmed/36830712
http://dx.doi.org/10.3390/biom13020343
work_keys_str_mv AT dufflisam anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT scarsbrookandrewf anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT ravikumarnishant anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT froodrussell anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT vanpraaghgijsd anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT mackiesarahl anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT baileymarca anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT tarkinjasonm anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT masonjustinc anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT vandergeestkornelissm anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT slartriemerhja anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT morganannw anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT tsoumpascharalampos anautomatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT dufflisam automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT scarsbrookandrewf automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT ravikumarnishant automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT froodrussell automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT vanpraaghgijsd automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT mackiesarahl automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT baileymarca automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT tarkinjasonm automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT masonjustinc automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT vandergeestkornelissm automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT slartriemerhja automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT morganannw automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages
AT tsoumpascharalampos automatedmethodforartificalintelligenceassisteddiagnosisofactiveaortitisusingradiomicanalysisoffdgpetctimages