Cargando…

Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure?

The COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infectio...

Descripción completa

Detalles Bibliográficos
Autor principal: Puthanveetil, Prasanth
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953159/
https://www.ncbi.nlm.nih.gov/pubmed/36830743
http://dx.doi.org/10.3390/biom13020374
_version_ 1784893808993894400
author Puthanveetil, Prasanth
author_facet Puthanveetil, Prasanth
author_sort Puthanveetil, Prasanth
collection PubMed
description The COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infection and the associated complications, bringing some solace to this ongoing turmoil. We are providing some insights regarding an ideal agent which could prevent SARS-CoV-2 multiplication. If we could identify an agent which is an activator of metabolism and is also bioactive, we could prevent corona activation (AMBICA). Some naturally occurring lipid molecules best fit this identity as an agent which has the capacity to replenish our host cells, specifically immune cells, with ATP. It could also act as a source for providing a substrate for host cell PARP family members for MARylation and PARylation processes, leading to manipulation of the viral macro domain function, resulting in curbing the virulence and propagation of SARS-CoV-2. Identification of the right lipid molecule or combination of lipid molecules will fulfill the criteria. This perspective has focused on a unique angle of host-pathogen interaction and will open up a new dimension in treating COVID-19 infection.
format Online
Article
Text
id pubmed-9953159
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99531592023-02-25 Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure? Puthanveetil, Prasanth Biomolecules Review The COVID-19 pandemic has had a great impact on global health and is an economic burden. Even with vaccines and anti-viral medications we are still scrambling to get a balance. In this perspective, we have shed light upon an extremely feasible approach by which we can control the SARS-CoV-2 infection and the associated complications, bringing some solace to this ongoing turmoil. We are providing some insights regarding an ideal agent which could prevent SARS-CoV-2 multiplication. If we could identify an agent which is an activator of metabolism and is also bioactive, we could prevent corona activation (AMBICA). Some naturally occurring lipid molecules best fit this identity as an agent which has the capacity to replenish our host cells, specifically immune cells, with ATP. It could also act as a source for providing a substrate for host cell PARP family members for MARylation and PARylation processes, leading to manipulation of the viral macro domain function, resulting in curbing the virulence and propagation of SARS-CoV-2. Identification of the right lipid molecule or combination of lipid molecules will fulfill the criteria. This perspective has focused on a unique angle of host-pathogen interaction and will open up a new dimension in treating COVID-19 infection. MDPI 2023-02-16 /pmc/articles/PMC9953159/ /pubmed/36830743 http://dx.doi.org/10.3390/biom13020374 Text en © 2023 by the author. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Review
Puthanveetil, Prasanth
Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure?
title Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure?
title_full Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure?
title_fullStr Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure?
title_full_unstemmed Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure?
title_short Metabolic Activation of PARP as a SARS-CoV-2 Therapeutic Target—Is It a Bait for the Virus or the Best Deal We Could Ever Make with the Virus? Is AMBICA the Potential Cure?
title_sort metabolic activation of parp as a sars-cov-2 therapeutic target—is it a bait for the virus or the best deal we could ever make with the virus? is ambica the potential cure?
topic Review
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953159/
https://www.ncbi.nlm.nih.gov/pubmed/36830743
http://dx.doi.org/10.3390/biom13020374
work_keys_str_mv AT puthanveetilprasanth metabolicactivationofparpasasarscov2therapeutictargetisitabaitforthevirusorthebestdealwecouldevermakewiththevirusisambicathepotentialcure