Cargando…
Predicting Potent Compounds Using a Conditional Variational Autoencoder Based upon a New Structure–Potency Fingerprint
Prediction of the potency of bioactive compounds generally relies on linear or nonlinear quantitative structure–activity relationship (QSAR) models. Nonlinear models are generated using machine learning methods. We introduce a novel approach for potency prediction that depends on a newly designed mo...
Autores principales: | Janela, Tiago, Takeuchi, Kosuke, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953226/ https://www.ncbi.nlm.nih.gov/pubmed/36830761 http://dx.doi.org/10.3390/biom13020393 |
Ejemplares similares
-
Rationalizing general limitations in assessing and comparing methods for compound potency prediction
por: Janela, Tiago, et al.
Publicado: (2023) -
Introducing a Chemically Intuitive Core-Substituent Fingerprint Designed to Explore Structural Requirements for Effective Similarity Searching and Machine Learning
por: Janela, Tiago, et al.
Publicado: (2022) -
Large-Scale Predictions of Compound Potency with Original and Modified Activity Classes Reveal General Prediction Characteristics and Intrinsic Limitations of Conventional Benchmarking Calculations
por: Janela, Tiago, et al.
Publicado: (2023) -
Evaluation of multi-target deep neural network models for compound potency prediction under increasingly challenging test conditions
por: Rodríguez-Pérez, Raquel, et al.
Publicado: (2021) -
Meta-learning for transformer-based prediction of potent compounds
por: Chen, Hengwei, et al.
Publicado: (2023)