Cargando…
Application of Convolutional Neural Networks Using Action Potential Shape for In-Silico Proarrhythmic Risk Assessment
This study proposes a convolutional neural network (CNN) model using action potential (AP) shapes as input for proarrhythmic risk assessment, considering the hypothesis that machine-learning features automatically extracted from AP shapes contain more meaningful information than do manually extracte...
Autores principales: | Jeong, Da Un, Yoo, Yedam, Marcellinus, Aroli, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953470/ https://www.ncbi.nlm.nih.gov/pubmed/36830942 http://dx.doi.org/10.3390/biomedicines11020406 |
Ejemplares similares
-
Proarrhythmic risk assessment of drugs by dV
(m)
/dt shapes using the convolutional neural network
por: Jeong, Da Un, et al.
Publicado: (2022) -
Assessment of Drug Proarrhythmicity Using Artificial Neural Networks With in silico Deterministic Model Outputs
por: Yoo, Yedam, et al.
Publicado: (2021) -
qInward variability-based in-silico proarrhythmic risk assessment of drugs using deep learning model
por: Jeong, Da Un, et al.
Publicado: (2022) -
Verification of the Efficacy of Mexiletine Treatment for the A1656D Mutation on Downgrading Reentrant Tachycardia Using a 3D Cardiac Electrophysiological Model
por: Qauli, Ali Ikhsanul, et al.
Publicado: (2022) -
Validation of in silico biomarkers for drug screening through ordinal logistic regression
por: Jeong, Da Un, et al.
Publicado: (2022)