Cargando…
Neuroinflammation, Energy and Sphingolipid Metabolism Biomarkers Are Revealed by Metabolic Modeling of Autistic Brains
Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders generally characterized by repetitive behaviors and difficulties in communication and social behavior. Despite its heterogeneous nature, several metabolic dysregulations are prevalent in individuals with ASD. T...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953696/ https://www.ncbi.nlm.nih.gov/pubmed/36831124 http://dx.doi.org/10.3390/biomedicines11020583 |
Sumario: | Autism spectrum disorders (ASD) are a heterogeneous group of neurodevelopmental disorders generally characterized by repetitive behaviors and difficulties in communication and social behavior. Despite its heterogeneous nature, several metabolic dysregulations are prevalent in individuals with ASD. This work aims to understand ASD brain metabolism by constructing an ASD-specific prefrontal cortex genome-scale metabolic model (GEM) using transcriptomics data to decipher novel neuroinflammatory biomarkers. The healthy and ASD-specific models are compared via uniform sampling to identify ASD-exclusive metabolic features. Noticeably, the results of our simulations and those found in the literature are comparable, supporting the accuracy of our reconstructed ASD model. We identified that several oxidative stress, mitochondrial dysfunction, and inflammatory markers are elevated in ASD. While oxidative phosphorylation fluxes were similar for healthy and ASD-specific models, and the fluxes through the pathway were nearly undisturbed, the tricarboxylic acid (TCA) fluxes indicated disruptions in the pathway. Similarly, the secretions of mitochondrial dysfunction markers such as pyruvate are found to be higher, as well as the activities of oxidative stress marker enzymes like alanine and aspartate aminotransferases (ALT and AST) and glutathione-disulfide reductase (GSR). We also detected abnormalities in the sphingolipid metabolism, which has been implicated in many inflammatory and immune processes, but its relationship with ASD has not been thoroughly explored in the existing literature. We suggest that important sphingolipid metabolites, such as sphingosine-1-phosphate (S1P), ceramide, and glucosylceramide, may be promising biomarkers for the diagnosis of ASD and provide an opportunity for the adoption of early intervention for young children. |
---|