Cargando…

Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study

Introduction: The neuromodulating effects of transcutaneous-spinal Direct Current Stimulation (tsDCS) have been reported to block pain signaling. For patients with chronic pain, tsDCS could be a potential treatment option. To approach this, we studied the effect of anodal tsDCS on patients with neur...

Descripción completa

Detalles Bibliográficos
Autores principales: Rahin, Hedayat, Jackson, Walker Scot, Thordstein, Magnus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953758/
https://www.ncbi.nlm.nih.gov/pubmed/36831772
http://dx.doi.org/10.3390/brainsci13020229
_version_ 1784893957427167232
author Rahin, Hedayat
Jackson, Walker Scot
Thordstein, Magnus
author_facet Rahin, Hedayat
Jackson, Walker Scot
Thordstein, Magnus
author_sort Rahin, Hedayat
collection PubMed
description Introduction: The neuromodulating effects of transcutaneous-spinal Direct Current Stimulation (tsDCS) have been reported to block pain signaling. For patients with chronic pain, tsDCS could be a potential treatment option. To approach this, we studied the effect of anodal tsDCS on patients with neuropathic pain approaching an optimal paradigm including the investigation of different outcome predictors. Methods: In this randomized, double-blinded, sham-controlled crossover study we recruited twenty patients with neurophysiologically evaluated neuropathic pain due to polyneuropathy (PNP). Variables (VAS; pain and sleep quality) were reported daily, one week prior to, and one week after the stimulation/sham period. Anodal tsDCS (2.5 mA, 20 min) was given once daily for three days during one week. BDNF-polymorphism, pharmacological treatment, and body mass index (BMI) of all the patients were investigated. Results: Comparing the effects of sham and real stimulation at the group level, there was a tendency towards reduced pain, but no significant effects were found. However, for sleep quality a significant improvement was seen. At the individual level, 30 and 35% of the subjects had a clinically significant improvement of pain level and sleep quality, respectively, the first day after the stimulation. Both effects were reduced over the coming week and these changes were negatively correlated. The BDNF polymorphism Val66Met was carried by 35% of the patients and this group was found to have a lower general level of pain but there was no significant difference in the tsDCS response effect. Neither pharmacologic treatment or BMI influenced the treatment effect. Conclusions: Short-term and sparse anodal thoracic tsDCS reduces pain and improves sleep with large inter-individual differences. Roughly 30% will benefit in a clinically meaningful way. The BDNF genotype seems to influence the level of pain that PNP produces. Individualized and intensified tsDCS may be a treatment option for neuropathic pain due to PNP.
format Online
Article
Text
id pubmed-9953758
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-99537582023-02-25 Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study Rahin, Hedayat Jackson, Walker Scot Thordstein, Magnus Brain Sci Article Introduction: The neuromodulating effects of transcutaneous-spinal Direct Current Stimulation (tsDCS) have been reported to block pain signaling. For patients with chronic pain, tsDCS could be a potential treatment option. To approach this, we studied the effect of anodal tsDCS on patients with neuropathic pain approaching an optimal paradigm including the investigation of different outcome predictors. Methods: In this randomized, double-blinded, sham-controlled crossover study we recruited twenty patients with neurophysiologically evaluated neuropathic pain due to polyneuropathy (PNP). Variables (VAS; pain and sleep quality) were reported daily, one week prior to, and one week after the stimulation/sham period. Anodal tsDCS (2.5 mA, 20 min) was given once daily for three days during one week. BDNF-polymorphism, pharmacological treatment, and body mass index (BMI) of all the patients were investigated. Results: Comparing the effects of sham and real stimulation at the group level, there was a tendency towards reduced pain, but no significant effects were found. However, for sleep quality a significant improvement was seen. At the individual level, 30 and 35% of the subjects had a clinically significant improvement of pain level and sleep quality, respectively, the first day after the stimulation. Both effects were reduced over the coming week and these changes were negatively correlated. The BDNF polymorphism Val66Met was carried by 35% of the patients and this group was found to have a lower general level of pain but there was no significant difference in the tsDCS response effect. Neither pharmacologic treatment or BMI influenced the treatment effect. Conclusions: Short-term and sparse anodal thoracic tsDCS reduces pain and improves sleep with large inter-individual differences. Roughly 30% will benefit in a clinically meaningful way. The BDNF genotype seems to influence the level of pain that PNP produces. Individualized and intensified tsDCS may be a treatment option for neuropathic pain due to PNP. MDPI 2023-01-30 /pmc/articles/PMC9953758/ /pubmed/36831772 http://dx.doi.org/10.3390/brainsci13020229 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Rahin, Hedayat
Jackson, Walker Scot
Thordstein, Magnus
Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study
title Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study
title_full Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study
title_fullStr Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study
title_full_unstemmed Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study
title_short Effect of Transcutaneous Spinal Direct Current Stimulation in Patients with Painful Polyneuropathy and Influence of Possible Predictors of Efficacy including BDNF Polymorphism: A Randomized, Sham-Controlled Crossover Study
title_sort effect of transcutaneous spinal direct current stimulation in patients with painful polyneuropathy and influence of possible predictors of efficacy including bdnf polymorphism: a randomized, sham-controlled crossover study
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953758/
https://www.ncbi.nlm.nih.gov/pubmed/36831772
http://dx.doi.org/10.3390/brainsci13020229
work_keys_str_mv AT rahinhedayat effectoftranscutaneousspinaldirectcurrentstimulationinpatientswithpainfulpolyneuropathyandinfluenceofpossiblepredictorsofefficacyincludingbdnfpolymorphismarandomizedshamcontrolledcrossoverstudy
AT jacksonwalkerscot effectoftranscutaneousspinaldirectcurrentstimulationinpatientswithpainfulpolyneuropathyandinfluenceofpossiblepredictorsofefficacyincludingbdnfpolymorphismarandomizedshamcontrolledcrossoverstudy
AT thordsteinmagnus effectoftranscutaneousspinaldirectcurrentstimulationinpatientswithpainfulpolyneuropathyandinfluenceofpossiblepredictorsofefficacyincludingbdnfpolymorphismarandomizedshamcontrolledcrossoverstudy