Cargando…
Improving Automatic Melanoma Diagnosis Using Deep Learning-Based Segmentation of Irregular Networks
SIMPLE SUMMARY: Supervised deep learning techniques can now automatically process whole dermoscopic images and obtain a diagnostic accuracy for melanoma that exceeds that of specialists. These automatic diagnosis systems are now appearing in clinics. However, the computational techniques used cannot...
Autores principales: | Nambisan, Anand K., Maurya, Akanksha, Lama, Norsang, Phan, Thanh, Patel, Gehana, Miller, Keith, Lama, Binita, Hagerty, Jason, Stanley, Ronald, Stoecker, William V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953766/ https://www.ncbi.nlm.nih.gov/pubmed/36831599 http://dx.doi.org/10.3390/cancers15041259 |
Ejemplares similares
-
SharpRazor: Automatic removal of hair and ruler marks from dermoscopy images
por: Kasmi, Reda, et al.
Publicado: (2023) -
A deep learning approach to detect blood vessels in basal cell carcinoma
por: Maurya, A., et al.
Publicado: (2022) -
Automatic Screening and Grading of Age-Related Macular Degeneration from Texture Analysis of Fundus Images
por: Phan, Thanh Vân, et al.
Publicado: (2016) -
EpithNet: Deep Regression for Epithelium Segmentation in Cervical Histology Images
por: Sornapudi, Sudhir, et al.
Publicado: (2020) -
Automatic segmentation and melanoma detection based on color and texture features in dermoscopic images
por: Oukil, S., et al.
Publicado: (2021)