Cargando…
Implementation of Machine Learning Models to Ensure Radiotherapy Quality for Multicenter Clinical Trials: Report from a Phase III Lung Cancer Study
SIMPLE SUMMARY: Over 50% of all cancer patients receive radiation therapy (RT). The quality of the RT treatment plan is directly related to patient outcomes, such as overall survival and complications related to RT. In this study, we explore a knowledge-based machine learning tool for RT plan qualit...
Autores principales: | Geng, Huaizhi, Liao, Zhongxing, Nguyen, Quynh-Nhu, Berman, Abigail T., Robinson, Clifford, Wu, Abraham, Nichols Jr, Romaine Charles, Willers, Henning, Mohammed, Nasiruddin, Mohindra, Pranshu, Xiao, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953775/ https://www.ncbi.nlm.nih.gov/pubmed/36831358 http://dx.doi.org/10.3390/cancers15041014 |
Ejemplares similares
-
Optimizing neoadjuvant radiotherapy for resectable and borderline resectable pancreatic cancer using protons
por: Nichols, Romaine Charles, et al.
Publicado: (2019) -
Quality Assurance and Commissioning of an Infrared Marker-Based Patient Positioning System for Frameless Extracranial Stereotactic Radiotherapy
por: Gupta, Tejpal, et al.
Publicado: (2007) -
A comparison of two methodologies for radiotherapy treatment plan optimization and QA for clinical trials
por: Geng, Huaizhi, et al.
Publicado: (2021) -
Proposed brachytherapy recommendations (practical implementation, indications, and dose fractionation) during COVID-19 pandemic
por: Mohindra, Pranshu, et al.
Publicado: (2020) -
Automated Quality Assurance of OAR Contouring for Lung Cancer Based on Segmentation With Deep Active Learning
por: Men, Kuo, et al.
Publicado: (2020)