Cargando…
Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay
Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track t...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953785/ https://www.ncbi.nlm.nih.gov/pubmed/36832035 http://dx.doi.org/10.3390/bios13020269 |
_version_ | 1784893963975524352 |
---|---|
author | Damin, Francesco Galbiati, Silvia Clementi, Nicola Ferrarese, Roberto Mancini, Nicasio Sola, Laura Chiari, Marcella |
author_facet | Damin, Francesco Galbiati, Silvia Clementi, Nicola Ferrarese, Roberto Mancini, Nicasio Sola, Laura Chiari, Marcella |
author_sort | Damin, Francesco |
collection | PubMed |
description | Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track the distribution of variants as rapidly as possible. Genome sequencing is the gold standard for monitoring the evolution of the virus, but it is not cost-effective, rapid and easily accessible. We have developed a microarray-based assay that can distinguish known viral variants present in clinical samples by simultaneously detecting mutations in the Spike protein gene. In this method, the viral nucleic acid, extracted from nasopharyngeal swabs, after RT-PCR, hybridizes in solution with specific dual-domain oligonucleotide reporters. The domains complementary to the Spike protein gene sequence encompassing the mutation form hybrids in solution that are directed by the second domain (“barcode” domain) at specific locations on coated silicon chips. The method utilizes characteristic fluorescence signatures to unequivocally differentiate, in a single assay, different known SARS-CoV-2 variants. In the nasopharyngeal swabs of patients, this multiplex system was able to genotype the variants which have caused waves of infections worldwide, reported by the WHO as being of concern (VOCs), namely Alpha, Beta, Gamma, Delta and Omicron variants. |
format | Online Article Text |
id | pubmed-9953785 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-99537852023-02-25 Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay Damin, Francesco Galbiati, Silvia Clementi, Nicola Ferrarese, Roberto Mancini, Nicasio Sola, Laura Chiari, Marcella Biosensors (Basel) Article Since the emergence of the COVID-19 pandemic in December 2019, the SARS-CoV-2 virus continues to evolve into many variants emerging around the world. To enable regular surveillance and timely adjustments in public health interventions, it is of the utmost importance to accurately monitor and track the distribution of variants as rapidly as possible. Genome sequencing is the gold standard for monitoring the evolution of the virus, but it is not cost-effective, rapid and easily accessible. We have developed a microarray-based assay that can distinguish known viral variants present in clinical samples by simultaneously detecting mutations in the Spike protein gene. In this method, the viral nucleic acid, extracted from nasopharyngeal swabs, after RT-PCR, hybridizes in solution with specific dual-domain oligonucleotide reporters. The domains complementary to the Spike protein gene sequence encompassing the mutation form hybrids in solution that are directed by the second domain (“barcode” domain) at specific locations on coated silicon chips. The method utilizes characteristic fluorescence signatures to unequivocally differentiate, in a single assay, different known SARS-CoV-2 variants. In the nasopharyngeal swabs of patients, this multiplex system was able to genotype the variants which have caused waves of infections worldwide, reported by the WHO as being of concern (VOCs), namely Alpha, Beta, Gamma, Delta and Omicron variants. MDPI 2023-02-13 /pmc/articles/PMC9953785/ /pubmed/36832035 http://dx.doi.org/10.3390/bios13020269 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Damin, Francesco Galbiati, Silvia Clementi, Nicola Ferrarese, Roberto Mancini, Nicasio Sola, Laura Chiari, Marcella Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay |
title | Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay |
title_full | Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay |
title_fullStr | Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay |
title_full_unstemmed | Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay |
title_short | Dual-Domain Reporter Approach for Multiplex Identification of Major SARS-CoV-2 Variants of Concern in a Microarray-Based Assay |
title_sort | dual-domain reporter approach for multiplex identification of major sars-cov-2 variants of concern in a microarray-based assay |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953785/ https://www.ncbi.nlm.nih.gov/pubmed/36832035 http://dx.doi.org/10.3390/bios13020269 |
work_keys_str_mv | AT daminfrancesco dualdomainreporterapproachformultiplexidentificationofmajorsarscov2variantsofconcerninamicroarraybasedassay AT galbiatisilvia dualdomainreporterapproachformultiplexidentificationofmajorsarscov2variantsofconcerninamicroarraybasedassay AT clementinicola dualdomainreporterapproachformultiplexidentificationofmajorsarscov2variantsofconcerninamicroarraybasedassay AT ferrareseroberto dualdomainreporterapproachformultiplexidentificationofmajorsarscov2variantsofconcerninamicroarraybasedassay AT mancininicasio dualdomainreporterapproachformultiplexidentificationofmajorsarscov2variantsofconcerninamicroarraybasedassay AT solalaura dualdomainreporterapproachformultiplexidentificationofmajorsarscov2variantsofconcerninamicroarraybasedassay AT chiarimarcella dualdomainreporterapproachformultiplexidentificationofmajorsarscov2variantsofconcerninamicroarraybasedassay |