Cargando…
Effects of Patchwise Sampling Strategy to Three-Dimensional Convolutional Neural Network-Based Alzheimer’s Disease Classification
In recent years, the rapid development of artificial intelligence has promoted the widespread application of convolutional neural networks (CNNs) in neuroimaging analysis. Although three-dimensional (3D) CNNs can utilize the spatial information in 3D volumes, there are still some challenges related...
Autores principales: | Shen, Xiaoqi, Lin, Lan, Xu, Xinze, Wu, Shuicai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9953929/ https://www.ncbi.nlm.nih.gov/pubmed/36831797 http://dx.doi.org/10.3390/brainsci13020254 |
Ejemplares similares
-
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
Three-round learning strategy based on 3D deep convolutional GANs for Alzheimer’s disease staging
por: Kang, Wenjie, et al.
Publicado: (2023) -
Approximate analytical overall isotherms: lateral interactions of adsorbate species and patchwise topology
por: Vigdorowitsch, Michael, et al.
Publicado: (2020) -
Automated classification of three-dimensional reconstructions of
coral reefs using convolutional neural networks
por: Hopkinson, Brian M., et al.
Publicado: (2020) -
An Exploration: Alzheimer's Disease Classification Based on Convolutional Neural Network
por: Sethi, Monika, et al.
Publicado: (2022)