Cargando…

Highly Stable InSe-FET Biosensor for Ultra-Sensitive Detection of Breast Cancer Biomarker CA125

Two-dimensional materials-based field-effect transistors (FETs) are promising biosensors because of their outstanding electrical properties, tunable band gap, high specific surface area, label-free detection, and potential miniaturization for portable diagnostic products. However, it is crucial for...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Hao, Wang, Zhenhua, Wang, Shun, Wang, Chao, Zhang, Kai, Zhang, Yu, Han, Lin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954013/
https://www.ncbi.nlm.nih.gov/pubmed/36831959
http://dx.doi.org/10.3390/bios13020193
Descripción
Sumario:Two-dimensional materials-based field-effect transistors (FETs) are promising biosensors because of their outstanding electrical properties, tunable band gap, high specific surface area, label-free detection, and potential miniaturization for portable diagnostic products. However, it is crucial for FET biosensors to have a high electrical performance and stability degradation in liquid environments for their practical application. Here, a high-performance InSe-FET biosensor is developed and demonstrated for the detection of the CA125 biomarker in clinical samples. The InSe-FET is integrated with a homemade microfluidic channel, exhibiting good electrical stability during the liquid channel process because of the passivation effect on the InSe channel. The InSe-FET biosensor is capable of the quantitative detection of the CA125 biomarker in breast cancer in the range of 0.01–1000 U/mL, with a detection time of 20 min. This work provides a universal detection tool for protein biomarker sensing. The detection results of the clinical samples demonstrate its promising application in early screenings of major diseases.