Cargando…

MOFs-Modified Electrochemical Sensors and the Application in the Detection of Opioids

Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse reactions, and even endanger life. Therefore, it is essential to implement real-time measurement of drug concentrations to adjust the dosage given during treatment, keeping drug levels within therapeutic levels...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhao, Jiaqi, Kan, Ying, Chen, Zhi, Li, Hongmei, Zhang, Weifei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954106/
https://www.ncbi.nlm.nih.gov/pubmed/36832051
http://dx.doi.org/10.3390/bios13020284
Descripción
Sumario:Opioids are widely used in clinical practice, but drug overdoses can lead to many adverse reactions, and even endanger life. Therefore, it is essential to implement real-time measurement of drug concentrations to adjust the dosage given during treatment, keeping drug levels within therapeutic levels. Metal-Organic frameworks (MOFs) and their composite materials modified bare electrode electrochemical sensors have the advantages of fast production, low cost, high sensitivity, and low detection limit in the detection of opioids. In this review, MOFs and MOFs composites, electrochemical sensors modified with MOFs for the detection of opioids, as well as the application of microfluidic chips in combination with electrochemical methods are all reviewed, and the potential for the development of microfluidic chips electrochemical methods with MOFs surface modifications for the detection of opioids is also prospected. We hope that this review will provide contributions to the study of electrochemical sensors modified with MOFs for the detection of opioids.