Cargando…

Decreased ALFF and Functional Connectivity of the Thalamus in Vestibular Migraine Patients

Background: The thalamus has been reported to be associated with pain modulation and processing. However, the functional changes that occur in the thalamus of vestibular migraine (VM) patients remain unknown. Methods: In total, 28 VM patients and 28 healthy controls who were matched for age and sex...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhe, Xia, Tang, Min, Ai, Kai, Lei, Xiaoyan, Zhang, Xiaoling, Jin, Chenwang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954115/
https://www.ncbi.nlm.nih.gov/pubmed/36831726
http://dx.doi.org/10.3390/brainsci13020183
Descripción
Sumario:Background: The thalamus has been reported to be associated with pain modulation and processing. However, the functional changes that occur in the thalamus of vestibular migraine (VM) patients remain unknown. Methods: In total, 28 VM patients and 28 healthy controls who were matched for age and sex underwent resting-state functional magnetic resonance imaging. They also responded to standardized questionnaires aimed at assessing the clinical features associated with migraine and vertigo. Differences in the amplitude of low-frequency fluctuation (ALFF) were analyzed and brain regions with altered ALFF in the two groups were used for further analysis of whole-brain functional connectivity (FC). The relationship between clusters and clinical features was investigated by correlation analyses. Results: The ALFF in the thalamus was significantly decreased in the VM group versus the control group. In the VM group, the ALFF in the left thalamus negatively correlated with VM episode frequency. Furthermore, the left thalamus showed significantly weaker FC than both regions of the medial prefrontal cortex, both regions of the anterior cingulum cortex, the left superior/middle temporal gyrus, and the left temporal pole in the VM group. Conclusions: The thalamus plays an important role in VM patients and it is suggested that connectivity abnormalities of the thalamocortical region contribute to abnormal pain information processing and modulation, transmission, and multisensory integration in patients with VM.