Cargando…
Machine Learning Enhanced Computational Reverse Engineering Analysis for Scattering Experiments (CREASE) to Determine Structures in Amphiphilic Polymer Solutions
[Image: see text] In this article, we present a machine learning enhancement for our recently developed “Computational Reverse Engineering Analysis for Scattering Experiments” (CREASE) method to accelerate analysis of results from small angle scattering (SAS) experiments on polymer materials. We dem...
Autores principales: | Wessels, Michiel G., Jayaraman, Arthi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954245/ https://www.ncbi.nlm.nih.gov/pubmed/36855654 http://dx.doi.org/10.1021/acspolymersau.1c00015 |
Ejemplares similares
-
Computational Reverse Engineering Analysis for Scattering
Experiments (CREASE) on Vesicles Assembled from Amphiphilic Macromolecular
Solutions
por: Ye, Ziyu, et al.
Publicado: (2021) -
Computational Reverse-Engineering Analysis for Scattering
Experiments (CREASE) with Machine Learning Enhancement to Determine
Structure of Nanoparticle Mixtures and Solutions
por: Heil, Christian M., et al.
Publicado: (2022) -
Computational Reverse-Engineering Analysis for Scattering
Experiments for Form Factor and Structure Factor Determination (“P(q) and S(q) CREASE”)
por: Heil, Christian M., et al.
Publicado: (2023) -
Computational Reverse-Engineering Analysis for Scattering
Experiments of Assembled Binary Mixture of Nanoparticles
por: Heil, Christian M., et al.
Publicado: (2021) -
Unified Anatomical Explanation of Diagonal Earlobe Creases, Preauricular Creases, and Paired Creases of the Helix
por: Abrahim, Mohammed
Publicado: (2022)