Cargando…
Machine Learning Enabled P300 Classifier for Autism Spectrum Disorder Using Adaptive Signal Decomposition
Joint attention skills deficiency in Autism spectrum disorder (ASD) hinders individuals from communicating effectively. The P300 Electroencephalogram (EEG) signal-based brain–computer interface (BCI) helps these individuals in neurorehabilitation training to overcome this deficiency. The detection o...
Autores principales: | Peketi, Santhosh, Dhok, Sanjay B. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954262/ https://www.ncbi.nlm.nih.gov/pubmed/36831857 http://dx.doi.org/10.3390/brainsci13020315 |
Ejemplares similares
-
Machine Learning and Virtual Reality on Body Movements’ Behaviors to Classify Children with Autism Spectrum Disorder
por: Alcañiz Raya, Mariano, et al.
Publicado: (2020) -
Use of Empirical Mode Decomposition in ERP Analysis to Classify Familial Risk and Diagnostic Outcomes for Autism Spectrum Disorder
por: Abou-Abbas, Lina, et al.
Publicado: (2021) -
Voice acoustics allow classifying autism spectrum disorder with high accuracy
por: Briend, Frédéric, et al.
Publicado: (2023) -
On effectively predicting autism spectrum disorder therapy using an ensemble of classifiers
por: Twala, Bhekisipho, et al.
Publicado: (2023) -
Development of a Machine Learning Algorithm for the Surveillance of Autism Spectrum Disorder
por: Maenner, Matthew J., et al.
Publicado: (2016)