Cargando…
Data-Driven Methods for Accelerating Polymer Design
[Image: see text] Optimal design of polymers is a challenging task due to their enormous chemical and configurational space. Recent advances in computations, machine learning, and increasing trends in data and software availability can potentially address this problem and accelerate the molecular-sc...
Autor principal: | Patra, Tarak K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2021
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954355/ https://www.ncbi.nlm.nih.gov/pubmed/36855746 http://dx.doi.org/10.1021/acspolymersau.1c00035 |
Ejemplares similares
-
Data-Driven Strategies for Accelerated Materials Design
por: Pollice, Robert, et al.
Publicado: (2021) -
Data-driven acceleration of photonic simulations
por: Trivedi, Rahul, et al.
Publicado: (2019) -
A polymer dataset for accelerated property prediction and design
por: Huan, Tran Doan, et al.
Publicado: (2016) -
Machine Learning Strategy for Accelerated Design of Polymer Dielectrics
por: Mannodi-Kanakkithodi, Arun, et al.
Publicado: (2016) -
Data-Driven Risk Matrices for CERN’s Accelerators
por: Cartier-Michaud, Thomas, et al.
Publicado: (2021)