Cargando…

All-Peptide-Based Polyion Complex Vesicles: Facile Preparation and Encapsulation of the Protein in Active Form

[Image: see text] The polyion complex vesicle (PICsome) is a promising platform for bioactive molecule delivery as well as nanoreactor systems. In addition to anionic and cationic charged blocks, a hydrophilic poly(ethylene glycol) (PEG) block is mostly employed for PICsome formation; however, the l...

Descripción completa

Detalles Bibliográficos
Autores principales: Fujita, Seiya, Tsuchiya, Kousuke, Numata, Keiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2021
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954412/
https://www.ncbi.nlm.nih.gov/pubmed/36855555
http://dx.doi.org/10.1021/acspolymersau.1c00008
Descripción
Sumario:[Image: see text] The polyion complex vesicle (PICsome) is a promising platform for bioactive molecule delivery as well as nanoreactor systems. In addition to anionic and cationic charged blocks, a hydrophilic poly(ethylene glycol) (PEG) block is mostly employed for PICsome formation; however, the long-term safety of the PEG component in vivo is yet to be clarified. In this study, we developed novel PEG-free PICsome comprising all peptide components. Instead of the PEG block, we selected the sarcosine (Sar) oligomer as a hydrophilic block and fused it with anionic oligo(l-glutamic acid). Mixing the Sar-containing anionic peptide with cationic oligo(l-lysine) resulted in the formation of stable vesicles. The peptide-based PICsome was able to encapsulate a model protein in its hollow structure. After modification of the surface with a cell-penetrating peptide, the protein-encapsulated PICsome was successfully delivered into plant cells, indicating its promised for application as a biocompatible carrier for protein delivery.