Cargando…

SMART: A Swing-Assisted Multiplexed Analyzer for Point-of-Care Respiratory Tract Infection Testing

Respiratory tract infections such as the ongoing coronavirus disease 2019 (COVID-19) has seriously threatened public health in the last decades. The experience of fighting against the epidemic highlights the importance of user-friendly and accessible point-of-care systems for nucleic acid (NA) detec...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Li, Wang, Xu, Liu, Dongchen, Wu, Yu, Feng, Li, Han, Chunyan, Liu, Jiajia, Lu, Ying, Sotnikov, Dmitriy V., Xu, Youchun, Cheng, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954503/
https://www.ncbi.nlm.nih.gov/pubmed/36831994
http://dx.doi.org/10.3390/bios13020228
Descripción
Sumario:Respiratory tract infections such as the ongoing coronavirus disease 2019 (COVID-19) has seriously threatened public health in the last decades. The experience of fighting against the epidemic highlights the importance of user-friendly and accessible point-of-care systems for nucleic acid (NA) detection. To realize low-cost and multiplexed point-of-care NA detection, a swing-assisted multiplexed analyzer for point-of-care respiratory tract infection testing (SMART) was proposed to detect multiple respiratory tract pathogens using visible loop-mediated isothermal amplification. By performing hand-swing movements to generate acceleration force to distribute samples into reaction chambers, the design of the SMART system was greatly simplified. By using different format of chips and integrating into a suitcase, this system can be applied to on-site multitarget and multi-sample testing. Three targets including the N and Orf genes of SARS-CoV-2 and the internal control were simultaneously analyzed (limit of detection: 2000 copies/mL for raw sample; 200 copies/mL for extracted sample). Twenty-three clinical samples with eight types of respiratory bacteria and twelve COVID-19 clinical samples were successfully detected. These results indicate that the SMART system has the potential to be further developed as a versatile tool in the diagnosis of respiratory tract infection.