Cargando…
Convolutional Neural Network with a Topographic Representation Module for EEG-Based Brain—Computer Interfaces
Convolutional neural networks (CNNs) have shown great potential in the field of brain–computer interfaces (BCIs) due to their ability to directly process raw electroencephalogram (EEG) signals without artificial feature extraction. Some CNNs have achieved better classification accuracy than that of...
Autores principales: | Liang, Xinbin, Liu, Yaru, Yu, Yang, Liu, Kaixuan, Liu, Yadong, Zhou, Zongtan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954538/ https://www.ncbi.nlm.nih.gov/pubmed/36831811 http://dx.doi.org/10.3390/brainsci13020268 |
Ejemplares similares
-
EEG-based emergency braking intention detection during simulated driving
por: Liang, Xinbin, et al.
Publicado: (2023) -
Effects of Low Mental Energy from Long Periods of Work on Brain-Computer Interfaces
por: Liu, Kaixuan, et al.
Publicado: (2022) -
A novel brain-controlled wheelchair combined with computer vision and augmented reality
por: Liu, Kaixuan, et al.
Publicado: (2022) -
Spike-Representation of EEG Signals for Performance Enhancement of Brain-Computer Interfaces
por: Singanamalla, Sai Kalyan Ranga, et al.
Publicado: (2022) -
Retinotopic and topographic analyses with gaze restriction for steady-state visual evoked potentials
por: Zhang, Nannan, et al.
Publicado: (2019)