Cargando…

ATP-Dependent Chromatin Remodellers in Inner Ear Development

During transcription, DNA replication and repair, chromatin structure is constantly modified to reveal specific genetic regions and allow access to DNA-interacting enzymes. ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to modify chromatin architecture by repositionin...

Descripción completa

Detalles Bibliográficos
Autores principales: Chohra, Ilyas, Chung, Keshi, Giri, Subhajit, Malgrange, Brigitte
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954591/
https://www.ncbi.nlm.nih.gov/pubmed/36831199
http://dx.doi.org/10.3390/cells12040532
Descripción
Sumario:During transcription, DNA replication and repair, chromatin structure is constantly modified to reveal specific genetic regions and allow access to DNA-interacting enzymes. ATP-dependent chromatin remodelling complexes use the energy of ATP hydrolysis to modify chromatin architecture by repositioning and rearranging nucleosomes. These complexes are defined by a conserved SNF2-like, catalytic ATPase subunit and are divided into four families: CHD, SWI/SNF, ISWI and INO80. ATP-dependent chromatin remodellers are crucial in regulating development and stem cell biology in numerous organs, including the inner ear. In addition, mutations in genes coding for proteins that are part of chromatin remodellers have been implicated in numerous cases of neurosensory deafness. In this review, we describe the composition, structure and functional activity of these complexes and discuss how they contribute to hearing and neurosensory deafness.