Cargando…
Subject Separation Network for Reducing Calibration Time of MI-Based BCI
Motor imagery brain–computer interface (MI-based BCIs) have demonstrated great potential in various applications. However, to well generalize classifiers to new subjects, a time-consuming calibration process is necessary due to high inter-subject variabilities of EEG signals. This process is costly...
Autores principales: | Hu, Haochen, Yue, Kang, Guo, Mei, Lu, Kai, Liu, Yue |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954620/ https://www.ncbi.nlm.nih.gov/pubmed/36831764 http://dx.doi.org/10.3390/brainsci13020221 |
Ejemplares similares
-
An Inter- and Intra-Subject Transfer Calibration Scheme for Improving Feedback Performance of Sensorimotor Rhythm-Based BCI Rehabilitation
por: Cao, Lei, et al.
Publicado: (2021) -
Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study
por: Hong, Xin, et al.
Publicado: (2017) -
Automatic subject-specific spatiotemporal feature selection for subject-independent affective BCI
por: Almarri, Badar, et al.
Publicado: (2021) -
Electroacupuncture Alters BCI-Based Brain Network in Stroke Patients
por: Song, Zuoting, et al.
Publicado: (2022) -
Research and Verification of Convolutional Neural Network Lightweight in BCI
por: Xu, Shipu, et al.
Publicado: (2020)