Cargando…
Constrain Bias Addition to Train Low-Latency Spiking Neural Networks
In recent years, a third-generation neural network, namely, spiking neural network, has received plethora of attention in the broad areas of Machine learning and Artificial Intelligence. In this paper, a novel differential-based encoding method is proposed and new spike-based learning rules for back...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954654/ https://www.ncbi.nlm.nih.gov/pubmed/36831862 http://dx.doi.org/10.3390/brainsci13020319 |
Sumario: | In recent years, a third-generation neural network, namely, spiking neural network, has received plethora of attention in the broad areas of Machine learning and Artificial Intelligence. In this paper, a novel differential-based encoding method is proposed and new spike-based learning rules for backpropagation is derived by constraining the addition of bias voltage in spiking neurons. The proposed differential encoding method can effectively exploit the correlation between the data and improve the performance of the proposed model, and the new learning rule can take complete advantage of the modulation properties of bias on the spike firing threshold. We experiment with the proposed model on the environmental sound dataset RWCP and the image dataset MNIST and Fashion-MNIST, respectively, and assign various conditions to test the learning ability and robustness of the proposed model. The experimental results demonstrate that the proposed model achieves near-optimal results with a smaller time step by maintaining the highest accuracy and robustness with less training data. Among them, in MNIST dataset, compared with the original spiking neural network with the same network structure, we achieved a 0.39% accuracy improvement. |
---|