Cargando…
Constrain Bias Addition to Train Low-Latency Spiking Neural Networks
In recent years, a third-generation neural network, namely, spiking neural network, has received plethora of attention in the broad areas of Machine learning and Artificial Intelligence. In this paper, a novel differential-based encoding method is proposed and new spike-based learning rules for back...
Autores principales: | Lin, Ranxi, Dai, Benzhe, Zhao, Yingkai, Chen, Gang, Lu, Huaxiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954654/ https://www.ncbi.nlm.nih.gov/pubmed/36831862 http://dx.doi.org/10.3390/brainsci13020319 |
Ejemplares similares
-
Revisiting Batch Normalization for Training Low-Latency Deep Spiking Neural Networks From Scratch
por: Kim, Youngeun, et al.
Publicado: (2021) -
Low-Latency Spiking Neural Networks Using Pre-Charged Membrane Potential and Delayed Evaluation
por: Hwang, Sungmin, et al.
Publicado: (2021) -
Latency correction in sparse neuronal spike trains
por: Kreuz, Thomas, et al.
Publicado: (2022) -
ALBSNN: ultra-low latency adaptive local binary spiking neural network with accuracy loss estimator
por: Pei, Yijian, et al.
Publicado: (2023) -
Neuroevolution Guided Hybrid Spiking Neural Network Training
por: Lu, Sen, et al.
Publicado: (2022)