Cargando…
Development of Deep Learning with RDA U-Net Network for Bladder Cancer Segmentation
SIMPLE SUMMARY: This study proposed the “Residual-Dense-Attention” (RDA) U-Net model architecture to automatically segment organs and lesions in computed tomography (CT) images. The RDA U-Net used ResBlock and DenseBlock at the encoder. Attention gates were used at the decoder position to help the m...
Autores principales: | Lee, Ming-Chan, Wang, Shao-Yu, Pan, Cheng-Tang, Chien, Ming-Yi, Li, Wei-Ming, Xu, Jin-Hao, Luo, Chi-Hung, Shiue, Yow-Ling |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954660/ https://www.ncbi.nlm.nih.gov/pubmed/36831685 http://dx.doi.org/10.3390/cancers15041343 |
Ejemplares similares
-
Development of Novel Residual-Dense-Attention (RDA) U-Net Network Architecture for Hepatocellular Carcinoma Segmentation
por: Chen, Wen-Fan, et al.
Publicado: (2022) -
Esta es la RDA
Publicado: (1982) -
iRDA: a new filter towards predictive, stable, and enriched candidate genes
por: Lai, Hung-Ming, et al.
Publicado: (2015) -
La RDA todos los días.
Publicado: (1982) -
Introducing RDA: a guide to the basics
por: Oliver, Chris
Publicado: (2010)