Cargando…
FabNet: A Features Agglomeration-Based Convolutional Neural Network for Multiscale Breast Cancer Histopathology Images Classification
SIMPLE SUMMARY: Histology sample images are usually diagnosed definitively based on the radiologist’s extensive knowledge, yet, owing to the highly gritty visual appearance of such images, specialists sometimes differ on their evaluations. Automating the image diagnostic process and decreasing the a...
Autores principales: | Amin, Muhammad Sadiq, Ahn, Hyunsik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954749/ https://www.ncbi.nlm.nih.gov/pubmed/36831359 http://dx.doi.org/10.3390/cancers15041013 |
Ejemplares similares
-
Multiscale High-Level Feature Fusion for Histopathological Image Classification
por: Lai, ZhiFei, et al.
Publicado: (2017) -
Breast cancer histopathological image classification using convolutional neural networks with small SE-ResNet module
por: Jiang, Yun, et al.
Publicado: (2019) -
Detection of pulmonary nodules based on a multiscale feature 3D U-Net convolutional neural network of transfer learning
por: Tang, Siyuan, et al.
Publicado: (2020) -
Multiclass classification of breast cancer histopathology images using multilevel features of deep convolutional neural network
por: Hameed, Zabit, et al.
Publicado: (2022) -
Analysis and Classification of Hepatitis Infections Using Raman Spectroscopy and Multiscale Convolutional Neural Networks
por: Zhao, Y., et al.
Publicado: (2021)