Cargando…
Input Shape Effect on Classification Performance of Raw EEG Motor Imagery Signals with Convolutional Neural Networks for Use in Brain—Computer Interfaces
EEG signals are interpreted, analyzed and classified by many researchers for use in brain–computer interfaces. Although there are many different EEG signal acquisition methods, one of the most interesting is motor imagery signals. Many different signal processing methods, machine learning and deep l...
Autores principales: | Arı, Emre, Taçgın, Ertuğrul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954790/ https://www.ncbi.nlm.nih.gov/pubmed/36831784 http://dx.doi.org/10.3390/brainsci13020240 |
Ejemplares similares
-
Classification of Motor Imagery EEG Signals Based on Data Augmentation and Convolutional Neural Networks
por: Xie, Yu, et al.
Publicado: (2023) -
A Parallel Multiscale Filter Bank Convolutional Neural Networks for Motor Imagery EEG Classification
por: Wu, Hao, et al.
Publicado: (2019) -
Local and global convolutional transformer-based motor imagery EEG classification
por: Zhang, Jiayang, et al.
Publicado: (2023) -
Motor Imagery Classification for Brain Computer Interface Using Deep Convolutional Neural Networks and Mixup Augmentation
Publicado: (2022) -
Spatial-Frequency Feature Learning and Classification of Motor Imagery EEG Based on Deep Convolution Neural Network
por: Miao, Minmin, et al.
Publicado: (2020)