Cargando…
A Novel Contrastive Self-Supervised Learning Framework for Solving Data Imbalance in Solder Joint Defect Detection
Poor chip solder joints can severely affect the quality of the finished printed circuit boards (PCBs). Due to the diversity of solder joint defects and the scarcity of anomaly data, it is a challenging task to automatically and accurately detect all types of solder joint defects in the production pr...
Autores principales: | Zhou, Jing, Li, Guang, Wang, Ruifeng, Chen, Ruiyang, Luo, Shouhua |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954869/ https://www.ncbi.nlm.nih.gov/pubmed/36832635 http://dx.doi.org/10.3390/e25020268 |
Ejemplares similares
-
Learn to solder
por: Jepson, Brian, et al.
Publicado: (2012) -
Malicious Traffic Identification with Self-Supervised Contrastive Learning
por: Yang, Jin, et al.
Publicado: (2023) -
Effect of soldering techniques and gap distance on tensile strength of soldered Ni-Cr alloy joint
por: Lee, Sang-Yeob, et al.
Publicado: (2010) -
Study on the Influence of Defects on Fracture Mechanical Behavior of Cu/SAC305/Cu Solder Joint
por: Zhang, Sinan, et al.
Publicado: (2022) -
Solder joint technology: materials, properties, and reliability
por: Tu, King-Ning
Publicado: (2007)