Cargando…
A New Approach for Gastrointestinal Tract Findings Detection and Classification: Deep Learning-Based Hybrid Stacking Ensemble Models
Endoscopic procedures for diagnosing gastrointestinal tract findings depend on specialist experience and inter-observer variability. This variability can cause minor lesions to be missed and prevent early diagnosis. In this study, deep learning-based hybrid stacking ensemble modeling has been propos...
Autores principales: | Sivari, Esra, Bostanci, Erkan, Guzel, Mehmet Serdar, Acici, Koray, Asuroglu, Tunc, Ercelebi Ayyildiz, Tulin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954881/ https://www.ncbi.nlm.nih.gov/pubmed/36832205 http://dx.doi.org/10.3390/diagnostics13040720 |
Ejemplares similares
-
Deep Learning in Diagnosis of Dental Anomalies and Diseases: A Systematic Review
por: Sivari, Esra, et al.
Publicado: (2023) -
Machine Learning Analysis of RNA-seq Data for Diagnostic and Prognostic Prediction of Colon Cancer
por: Bostanci, Erkan, et al.
Publicado: (2023) -
Crohn’s Disease Prediction Using Sequence Based Machine Learning Analysis of Human Microbiome
por: Unal, Metehan, et al.
Publicado: (2023) -
A Novel Hybrid Machine Learning Based System to Classify Shoulder Implant Manufacturers
por: Sivari, Esra, et al.
Publicado: (2022) -
Monte Carlo Simulation of TRIM Algorithm in Ceramic Biomaterial in Proton Therapy
por: Ekinci, Fatih, et al.
Publicado: (2023)