Cargando…
TREPH: A Plug-In Topological Layer for Graph Neural Networks
Topological Data Analysis (TDA) is an approach to analyzing the shape of data using techniques from algebraic topology. The staple of TDA is Persistent Homology (PH). Recent years have seen a trend of combining PH and Graph Neural Networks (GNNs) in an end-to-end manner to capture topological featur...
Autores principales: | Ye, Xue, Sun, Fang, Xiang, Shiming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954936/ https://www.ncbi.nlm.nih.gov/pubmed/36832697 http://dx.doi.org/10.3390/e25020331 |
Ejemplares similares
-
Subgraph Learning for Topological Geolocalization with Graph Neural Networks
por: Zha, Bing, et al.
Publicado: (2023) -
Learnable Topological Features for Phylogenetic Inference via Graph Neural Networks
por: Zhang, Cheng
Publicado: (2023) -
Topological Feature Extraction and Visualization of Whole Slide Images using Graph Neural Networks
por: Levy, Joshua, et al.
Publicado: (2021) -
A graph neural network framework for mapping histological topology in oral mucosal tissue
por: Nair, Aravind, et al.
Publicado: (2022) -
Detecting influential nodes with topological structure via Graph Neural Network approach in social networks
por: Bhattacharya, Riju, et al.
Publicado: (2023)