Cargando…
Deep Learning Provides a New Magnetic Resonance Imaging-Based Prognostic Biomarker for Recurrence Prediction in High-Grade Serous Ovarian Cancer
This study aims to use a deep learning method to develop a signature extract from preoperative magnetic resonance imaging (MRI) and to evaluate its ability as a non-invasive recurrence risk prognostic marker in patients with advanced high-grade serous ovarian cancer (HGSOC). Our study comprises a to...
Autores principales: | Liu, Lili, Wan, Haoming, Liu, Li, Wang, Jie, Tang, Yibo, Cui, Shaoguo, Li, Yongmei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9954966/ https://www.ncbi.nlm.nih.gov/pubmed/36832236 http://dx.doi.org/10.3390/diagnostics13040748 |
Ejemplares similares
-
Preoperative CT-based deep learning model for predicting overall survival in patients with high-grade serous ovarian cancer
por: Zheng, Yawen, et al.
Publicado: (2022) -
Identification of Potential Prognostic Competing Triplets in High-Grade Serous Ovarian Cancer
por: Zhao, Jian, et al.
Publicado: (2021) -
Biological and prognostic value of ETV5 in high-grade serous ovarian cancer
por: Zhang, Lu, et al.
Publicado: (2021) -
Prognostic gene expression signature for high-grade serous ovarian cancer
por: Millstein, J., et al.
Publicado: (2020) -
Low-grade Serous Ovarian Carcinoma
por: Ricciardi, Enzo, et al.
Publicado: (2018)